
Conflict Management in Aspect-Oriented Requirements
Engineering

Alberto Sardinha
Computing Department

Lancaster University
Lancaster, LA1 4WA, UK

sardinha@comp.lancs.ac.uk

João Araújo
Dept. de Informática,

CITI/FCT
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

ja@di.fct.unl.pt

Ana Moreira
Dept. de Informática,

CITI/FCT
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

amm@di.fct.unl.pt
Awais Rashid

Computing Department
Lancaster University

Lancaster, LA1 4WA, UK
awais@comp.lancs.ac.uk

ABSTRACT
One of the main goals of Aspect-Oriented Requirements En-
gineering (AORE) is to address the composability and subse-
quent analysis of crosscutting requirements. However, com-
posing requirements in AORE may lead to conflicting situ-
ations that have to be analyzed and resolved. There are a
few AORE methods for resolving conflicts between require-
ments, but most of them are error-prone or have scalability
issues. This paper presents a mathematical formulation for
resolving conflicts that can be implemented with Search-
based techniques (i.e., metaheuristics) to address the scala-
bility and error-proneness of the existing AORE methods.

1. INTRODUCTION
Aspect-Oriented Requirements Engineering (AORE) [1] [3] [11]
aims at addressing the composability and subsequent anal-
ysis of crosscutting requirements. Compositions in AORE
are utilized to explicitly represent and analyze the interde-
pendencies between requirements.

However, composing requirements may lead to situations
where conflicting dependencies between requirements have
to be detected and resolved. In this context, a conflict oc-
curs when a crosscutting requirement has a negative contri-
bution with another crosscutting requirement in the same
base requirement. For example, a data encryption require-
ment and a response time requirement that crosscut the
same base requirement may lead to a conflicting dependency,
because encryption normally reduces the responsiveness of
a system [13].

Several AORE approaches for resolving conflicts are either

based on simple reasoning methods [10, 12] that are error-
prone or Multiple Criteria Decision Making [4] models that
cannot handle more than twenty requirements [2]. There-
fore, the resolution of conflicts in large AORE specifications
is an error-prone and time-consuming task that creates a
burden on the requirements engineer.

In order to deal with the scalability and error-proneness is-
sues of the existing AORE approaches, this paper presents
a mathematical formulation for resolving conflicts in AORE
specifications that can be implemented with search-based
techniques. Within the Search-Based Software Engineering
field [8], search-based techniques are metaheuristics that are
utilized for solving software engineering problems that can
be formulated as optimization problems.

This paper is organized as follows. Section 2 presents the
mathematical formulation for resolving conflicts in AORE.
Section 3 discusses how to implement the mathematical for-
mulation with a search-based technique. Finally, the con-
clusions and future work are presented in Section 4.

2. RESOLVING CONFLICTS IN AORE
In our multi-dimensional approach, a concern implies any co-
herent collection of requirements. All concerns are treated
in a uniform fashion, so we do not classify concerns into
viewpoints, use cases or aspects; However, our concerns still
encapsulate coherent sets of functional and nonfunctional
requirements. For example, a security concern may contain
a data encryption requirement and a security check require-
ment. The composition rules [12, 5] in aspect-oriented spec-
ifications define the relationship between various groups of
requirements. However, the process of defining these compo-
sition rules may lead to conflicting dependencies that have
to be detected and resolved.

The aim of this section is to present the main characteristics
of the conflict management problem in AORE and to pro-
pose a model that formulates the conflict resolution problem
as an optimization problem. The following characteristics
were considered in this mathematical formulation:

1. Aspect-oriented Specification: This specification is com-
posed of requirements that are grouped into concerns,
and composition rules that define the relationship be-
tween requirements.

2. Stakeholders’ priorities and importance: The require-
ments of the system are collected from stakeholders,
and each stakeholder might have different priorities for
each requirement. Moreover, each stakeholder might
have a different level of importance to the organization.

3. Available resources: Every software project has a lim-
ited amount of resources (e.g., software developers,
tools, licenses, financial resources) to implement the
requirements.

In a general sense, our approach has as its basis a mathemat-
ical formulation of an aspect-oriented specification, stake-
holder’s priorities and importance, and resources available
for implementing the requirements. The aim of the conflict
management problem is to select requirements that can max-
imize the stakeholders’ satisfaction and respect the availabil-
ity of resources.

2.1 Aspect-oriented Specification
In general, an aspect-oriented specification is composed of
the following elements:

• Requirements R = {r1, r2, ..., r|R|} : Requirements
are collected from different stakeholders (e.g, end-users,
developers, managers) and express different perspec-
tives on the system;

• Concerns C = {C1, C2, ..., C|C|}: Concerns encap-
sulate one or more requirements related to a certain
matter of interest; Hence, a concern is a subset of R:
Ci ⊆ R.

• Compositions rules Cr = {Cr1, Cr2, ..., Cr|Cr|}: A
composition rule, Crj , describes how a set of con-
straint requirements, Csj ⊆ R, crosscut a set of base
requirements, Bsj ⊆ R.

2.2 Stakeholders’ Priorities and Importance
Stakeholder [15] is a person or a group that will, in some
way, be affected by the system. They normally have different
objectives and needs that can lead to conflicting situations.
Additionally, stakeholders have different importance levels
to the organization.This is formulated as follows:

• Stakeholders: S = {s1, s2, ..., s|S|}

• Stakeholders’ Priorities: priority : S × R → R.
Hence, we use weights to express stakeholders’s prior-
ities.

• Stakeholders’ Importance Levels: importance :
S → R. Hence, we also use weights to express the
different importance levels of the stakeholders.

2.3 Available Resources
Resources are all the services, goods, and human resources
available for implementing the requirements (e.g, developers,
tools, testers, hardware, software). This is formulated as
follows:

• Resources Rs = {Rs1, Rs2, ..., Rs|Rs|}

2.4 Identifying Match Points
Match Points are used as a basis to detect and resolve con-
flicts among composed requirements, because they explic-
itly represent the interactions of a requirement with other
requirements with reference to a base requirement. This Sec-
tion describes the algorithm used to identify Match Points,
which is also utilized in [14] to detect potential conflicts be-
tween requirements.

Recall that a composition rule, Crk, describes how a set of
constraint requirements, Csk ⊆ R, crosscut a set of base
requirements, Bsk ⊆ R. Additionally, let Sci be the set
of compositions where ri is a base requirement. Thus, the
Match Point of requirement ri is defined by equation 1.

Mi =
[

k∈Sci

Csk (1)

A Match Point is the union of all the constraint requirements
that crosscut the same base requirement. For example, a
composition may select a constraint requirement r1 = “The
system should use a security protocol when sending data
over the internet” to crosscut the base requirements r3 =
“The login and password are sent to the server”. Addition-
ally, another composition may select a constraint require-
ment r2 = “The response time must not exceed 5 seconds”
to crosscut the base requirement r3. Thus, the Match Point
of r3 is {r1, r2}. So for each base requirement in the speci-
fication, we can find a Match Point.

2.5 Maximizing the Stakeholders’ Satisfaction
In a software project, the requirements engineer should al-
ways try to maximize the stakeholders’ satisfaction, without
violating the availability of resources. Hence, this can be
formulated as follows:

For each Match Point Mi:

Maximize :
X
s∈S

X
r∈Mi

importance(s)× priority(s, r)× xi

(2)

Subject to: X
r∈R

effort(r)× xi ≤ resources (3)

where xi are decision variables that assume a value 1 when
requirement r should be implemented and a value 0 when it
should not.

Table 1: The Importance of Requirements and
Stakeholders

Very Important]0.8, 1.0]
Important]0.5, 0.8]
Average]0.3, 0.5]
Not So Important]0.1, 0.3]
Do Not Care]0.0, 0.1]

Equation 2 expresses the stakeholder’s satisfaction by con-
sidering the stakeholder’s importance level and priorities,
and Equation 3 expresses that the effort needed to imple-
ment the requirements must respect the availability of re-
sources.

For example, the Match Point in Section 2.4 has two con-
flicting requirements {r1, r2} and only one developer (i.e., a
resource) that can implement only one of the requirements.
These two requirements are conflicting, because a security
protocol (such as encryption) normally reduces the respon-
siveness of a system (so the data might not be sent within 5
seconds).

Assuming these requirements have been collected from two
stakeholders ({s1, s2}), and each stakeholder selects weights
to each requirement using the scales in [12] (Table 1):

Stakeholder Requirement r1 Requirement r2

s1 Very Important (1.0) Average (0.5)
s2 Important (0.8) Very Important (1.0)

In addition, the organization regards the stakeholder s1 to
be Very Important (1.0 - Table 1), while the stakeholder s2

is Not So Important (0.3 - Table 1). Hence, we can find the
optimal solution with Equation 2:

1.0× 1.0× x1 + 1.0× 0.5× x2+

0.3× 0.8× x1 + 0.3× 1.0× x2

Recall that we can only implement one of the requirements,
so the only feasible solutions are {x1 = 1, x2 = 0} and {x1 =
0, x2 = 1}. Hence, the optimal solution is the one that
selects r1 to be implemented ({x1 = 1, x2 = 0}).

2.6 Resolving Conflicts in AORE
In order to resolve conflicts, we propose the following activ-
ities:

1. Detect Conflicts: We must first detect the match points
that have conflicting requirements (i.e., requirements
that have a negative contribution with another cross-
cutting requirement in the same base requirement).
There are many tools, such as [14], that can help a
requirements engineer perform this activity.

2. Solve the Optimization Problem: Equation 2 and Equa-
tion 3 can be used to select the requirements that max-
imize the stakeholders’ satisfaction. Moreover, the re-
quirements in each match point can also be sorted by

the stakeholders’ satisfaction to create a ranking of
the requirements. This activity can be performed by
a search-based technique.

3. Negotiate with Stakeholders: If a match point still has
conflicting requirements, then negotiation among stake-
holders is needed. The output of the previous activ-
ity can be used to help the stakeholders reason about
the conflicts and agree on a resolution. For example,
a stakeholder might agree to lower a weight that ex-
presses his priorities.

Once all the conflicts are resolved, the specification is re-
vised and recomposition carried out to identify any further
conflicts.

3. UTILIZING SEARCH-BASED TECHNIQUES
TO RESOLVE CONFLICTS IN AORE

Genetic Algorithm (GA) [9] is a machine learning technique
that has been successfully applied [6, 7] to Search-Based
Software Engineering problems. This learning method is
motivated by an analogy to biological evolution, by search-
ing a space of candidate solutions in order to identify the
best solution.

The implementation of a GA is based on a pool (called pop-
ulation) of candidate solutions (called chromosomes), and
iteratively updates this population by mutating and recom-
bining parts of the best currently known chromosomes. The
best chromosome is defined as the candidate solution that
maximizes a predefined numerical value (also known as fit-
tness).

In GAs, the candidate solutions (chromosomes) are encoded
as binary strings. To represent the n match points and m
requirements in each match point of our mathematical for-
mulation in Section 2, we can use a string with n×m bits.
Addtionally, the fitness of the population is derived from
Equation 2 and 3.

4. CONCLUSIONS
This paper presents a mathematical formulation for resolv-
ing conflicts in AORE that can be implemented with a pop-
ular search-based technique called Genetic Algorithm. The
mathematical formulation is composed of an aspect-oriented
specification, stakeholders’ importance and priorities, and
available resources for implementing the requirements. We
also show how to maximize the stakeholders’ satisfaction and
how to use it to resolve conflicts.

Our future research work will focus on the implementation
of a tool and an empirical evaluation of the tool. We also
would like to test different objective functions (Equation 2)
in order to capture different variations of the stakeholders’
satisfaction.

5. ACKNOWLEDGEMENTS
This work has been supported by a Marie Curie Fellow-
ship from the European Commission (Grant Agreement No.
PIIF-GA-2008-221016) and partially funded by FCT MCTES.

6. REFERENCES
[1] J. Araujo, J. Whittle, D.-K. Kim, Modeling and

composing scenario-based requirements with aspects,
in: RE ’04: Proceedings of the Requirements
Engineering Conference, 12th IEEE International,
IEEE Computer Society, Washington, DC, USA, 2004.

[2] P. Avesani, C. Bazzanella, A. Perini, A. Susi, Facing
scalability issues in requirements prioritization with
machine learning techniques, in: RE ’05: Proceedings
of the 13th IEEE International Conference on
Requirements Engineering, IEEE Computer Society,
Washington, DC, USA, 2005.

[3] E. Baniassad, S. Clarke, Theme: An approach for
aspect-oriented analysis and design, in: ICSE ’04:
Proceedings of the 26th International Conference on
Software Engineering, IEEE Computer Society,
Washington, DC, USA, 2004.

[4] I. S. Brito, F. Vieira, A. Moreira, R. A. Ribeiro,
Handling conflicts in aspectual requirements
compositions, T. Aspect-Oriented Software
Development 3 (2007) 144–166.

[5] R. Chitchyan, A. Rashid, P. Rayson, R. Waters,
Semantics-based composition for aspect-oriented
requirements engineering, in: AOSD ’07: Proceedings
of the 6th international conference on Aspect-oriented
software development, ACM, New York, NY, USA,
2007.

[6] F. Colares, J. Souza, R. Carmo, C. Padua, G. Mateus,
A new approach to the sotware release planning, in:
Proceedings of the 2009 XXIII Brazilian Symposium
on Software Engineering, 2009.

[7] D. Greer, G. Ruhe, Software release planning: an
evolutionary and iterative approach, Information and
Software Technology 46 (2004) 243–253.

[8] M. Harman, B. F. Jones, Search-based software
engineering, Information & Software Technology
43 (14) (2001) 833–839.

[9] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[10] A. Moreira, A. Rashid, J. Araújo, Multi-dimensional
separation of concerns in requirements engineering, in:
Proceedings of the 13th IEEE International
Conference on Requirements Engineering (RE’05),
2005.

[11] A. Rashid, A. Moreira, J. Araújo, Modularisation and
composition of aspectual requirements, in: AOSD ’03:
Proceedings of the 2nd international conference on
Aspect-oriented software development, ACM, New
York, NY, USA, 2003.

[12] A. Rashid, A. Moreira, J. Araújo, Modularisation and
composition of aspectual requirements, in: AOSD ’03:
Proceedings of the 2nd international conference on
Aspect-oriented software development, ACM, New
York, NY, USA, 2003.

[13] A. Sampaio, P. Greenwood, A. F. Garcia, A. Rashid,
A comparative study of aspect-oriented requirements
engineering approaches, in: ESEM ’07: Proceedings of
the First International Symposium on Empirical
Software Engineering and Measurement, IEEE
Computer Society, Washington, DC, USA, 2007.

[14] A. Sardinha, R. Chitchyan, N. Weston, P. Greenwood,
A. Rashid, Ea-analyzer: Automating conflict detection
in aspect-oriented requirements, in: ASE ’09:

Proceedings of the Twenty-Fourth IEEE/ACM
International Conference on Automated Software
Engineering, 2009.

[15] I. Sommerville, Software Engineering 8, eighth ed.,
Addison-Wesley, 2007.

