

A Method Based on Petri Nets for Identification of Aspects
Vahdat Abdelzad

Islamic Azad University Science and Research Branch,
Tehran, Iran

V.abdelzad@srbiau.ac.ir

Fereidoon Shams Aliee
Electrical and Computer Engineering Faculty

Shahid Beheshti University, GC, Evin,
Tehran, Iran

F_shams@sbu.ac.ir

ABSTRACT
One of the important factors in creating complexity in software

systems is the existence of crosscutting concerns. The concept of
aspect orientation with presentation of a method could modulate
crosscutting concerns into the single unit that is called aspect, and
solve many problems which are created such as tangling and
scattering. However, identification and specification of
crosscutting concerns and regarding them as aspects is not easy.
For this reason, various methods are presented but such methods
are informal. In this paper, we propose a formal method based on
Petri Nets for identification of aspects. In the method, a software
system is expressed in terms of a number of concerns. A concern
is composed of one or several requirements which realization of
them cause realization of that concern. The proposed method
defines requirements and concerns in the formal form by Petri
Nets and named them as requirement nets and concern nets.
Concern nets with dependencies which there are between
requirement nets, model the final system. The execution of final
modeled software system based on Petri Nets and monitoring its
transitions, shows crosscutting concerns which are candidate
aspects.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications--
Elicitation methods

General Terms
Design

Keywords
Crosscutting concerns, requirement nets, concern nets, Petri nets,
aspect-oriented requirements engineering, aspects

1. INTRODUCTION
Separation of concerns [2] is one of the important principles in

software systems development. The goal of separation of concerns
is to break a software system into several modules which have
minimum overlapping with each other. However, there is specific
kind of concerns that cannot be placed into a single module, these
concerns are called crosscutting concerns. In computer science,
crosscutting concerns are facets of a program which affect
(crosscut) other concerns [3]. Crosscutting concerns have two
important characteristics [4]:

 Lack of decomposition from other sections (design and
implementation)

 Placing their implementation code among several components

This kind of concerns when applied in the software system may
cause tangling and scattering problems. Aspect-Oriented
Programming (AOP) [1] through encapsulation of crosscutting

concerns into module called aspect could prevent implementation
level problems. Aspect-Oriented Software development (AOSD)
[24] express that aspect orientation in implementation phase is not
adequate, therefore, this concept has to be applied in other
development phases too. One of these phases is Aspect-Oriented
Requirements Engineering (AORE) [5]. The goal of AORE is
separation of crosscutting concerns and identification of aspects.
Many suitable methods for identification of aspects are offered in
[6, 7, 8, 9, 4]. These methods are informal or concerns are
regarded as non-functional requirements.

Regarding the importance of formal methods in acceptance and
application of a new method, it is necessary to offer formal
methods for identification and definition of aspect-oriented
primitive concepts. At this domain, in [10] a formal definition of
aspect using Petri Nets is presented. In [11] author(s) proposed an
approach for solving conflict result from applying various aspects
in the same join-point. However, none of them present a formal
method for identification of aspects.

In this paper a formal method based on Petri Nets to identify
crosscutting concerns is proposed. In the method main axis of
activity is the notion of concern. A concern is one or several
functional or non-functional requirements that can be seen as
candidate for aspect. The system that we want to identify its
aspects is constructed as series of concern nets and extant
dependencies between requirement nets. The execution of
resulting Petri Net for the system will give an output that it is
main factor for identification of aspects.

In this paper, in Section 2 we have an introduction of Petri Nets.
In Section 3 we study concerns and crosscutting concerns then we
present formal definitions based on Petri Nets for them. In Section
4, proposed method for obtaining aspects will be described. In
Section 5 a case study according to proposed method is stated.
Section 6 present related works and finally we have conclusions.

2. PETRI NETS
Petri Net is a mathematical based method for modeling and

verifying software artifacts that for first time in 1962 by Carl
Adam Petri was introduced. Petri Net provides clear and precise
semantics, an intuitive graphical notation, and many techniques
and tools for their analysis, simulation and execution. A formal
definition for Petri Net is following [12]:

Definition of Petri Net: A Petri Net is a 3-tuple PN= (P, T, F)
where:
 P is a finite set of places
 T is a finite set of transitions, P T=
 F (P×T) (T×P) is a set of arcs

In [13] T. Murata gave some typical interpretations of
transitions and places. A transition (an event) has a certain
number of input and output places representing the pre-condition

and post-condition of the event respectively. The presence of a
token in a place is interpreted as holding the truth of the condition
associated with the place, therefore, every software system can
modeled with Petri Nets. For example, take personnel
management system in consideration [11]. One of the system
concerns is increasing employee salary. For realization of the
concern, a system manager should enter user name and password
for entering to the system, then should read employee salary and
increase amount of his/her salary. Finally, the manager exit from
system. Sequence operations of increasing employee salary
concern are specified by the Petri Net CN in Figure 1.

Figure 1. A Petri net for personnel management system

3. CONCERNS AND CROSSCUTTING
CONCERNS

If aspect-oriented software development is to be fully realized,
concerns must be treated as first-class entities throughout the life
cycle [8]. Therefore, the systems that want to develop with aspect-
oriented software development have to express their specifications
and documentations in terms of concerns. Although the concept of
concern is well-understood intuitively but expressing a good
definition of concern is too hard. Many definitions of concern are
offered in [14, 6, 15, 16, 17, 18] which each of them have
different dimensions. We offer a comprehensive definition of
concern that includes these definitions.

One or several requirements depending on stakeholders and
system development that is able to implement by a code structure,
is called concern. In this definition, the "one or several" indicates
that one or several requirements may constitute a concern. The
"requirements" mentions to expectation behaviors in a system or
program [22]. The "stakeholders" indicates which requirements
include both system requirements and stakeholder requirements
(e.g. developers). The "development" indicates that the definition
is not limited to a certain phase of development process, such as
implementation phase. The "able to implement by a code
structure" enhances the application of concern concept in many
developing methods, such as object-oriented, structured and any
developing methods which have structures related to
implementation. So, we can utilize concern concept for quality
and quantity characteristics of systems.

Crosscutting concerns are main reason for causing tangling
problem. The tangling problem is an obstacle for
understandability and maintainability of systems [23]. According
to the above definition of concern, we can define a crosscutting
concern in the following: a crosscutting concern is a type of
concern and has requirements that used to realization of other
concerns, or entities of these requirements realize other concerns.
Also, we can relate the following definition to tangling problem:
If the requirement of a concern is applied to realization of other
concerns then the requirement has tangling problem. The
definition for tangling is high level since a requirement can
constitute from several fine-granularity requirements (entity) and
tangling problem is occurred in one of them.

Now, we offer formal definitions based on Petri Nets for
concern and requirement. These definitions are necessary for

proposed method. In the definitions, requirements and concerns
are defined as requirement nets and concern nets respectively.

Definition of Concern Net (CN): A concern net is a 2-tuple
CN= (SoR, SoE) where:
 SoR= (RN1, RN2, …, RNn) (n>0), it is a finite set of

requirement nets.
 SoE= (EO1, EO2, …, EOn) (n>0), it is a finite set of execution

orders.

Definition of Requirement Net (RN): A requirement net is a 2-
tuple RN= (PN, LE) where:
 PN is a Petri Net which is following: |P|=2, |T|=1, |F|=2.
 LE= (O1, O2, …, On), is a set of logical entities such as class.

Definition of execution order (EO): An execution order is a
sequence of requirement nets which present following:

EO= (RN1, RN2, …, RNn)

For example, two requirement nets in the names of RN1, RN2
are shown in Figure 2. The requirement net RN1 (cf. Figure 2.a) is
constituted one Petri Net PN1 and two logical entities O11, O12.
Also requirement net RN2 (cf. Figure 2.b) under one Petri Net
PN1 and three logical entities O21, O22, O23 is constituted. In
Figure 3 a concern net in the name of CN1 is shown. The concern
net CN1 is constituted two requirement nets RN1, RN2 and one
execution order EO1. The execution order EO1 is (RN1, RN2). In
the concern net CN1 transitions R11, R12 and requirement nets
RN1, RN2 are face to face. Due to existence an execution order in
Figure 3, one token in the first place of concern net CN1 is placed.

RN1= (PN1, LE1)
LE1= (O11, O12)

RN2= (PN2, LE2)
LE2= (O21, O22, O23)

(a) (b)

Figure 2. Requirement nets RN1, RN2

CN1= (SoR, SoE)
SoR = (RN1,RN2), SoE = (EO1), EO1= (RN1,RN2)

Figure 3. Concern net CN1 with two requirement nets and one

execution order

4. IDENTIFICATION OF ASPECTS USING
PETRI NETS

We consider eight stages for realization of the method. In order
to identification of aspects, these stages should be satisfied
respectively.

Stage 1: in this stage, system expresses in terms of concerns.
The system concerns get from lexical analysis of the system text.
Specifying the system via concerns is necessary for proposed
method due to the fact that in our method concerns are first-class.

Stage 2: in this stage, we specify requirements which are
associated to each concern. The requirements may obtain through
any traditional requirements engineering approaches. The quality

and quantity of specified requirements for every concern depend
on interactions between requirements engineering and
stakeholders [7]. However, specification of all requirements for
each concern in first glance is not easy and some of them are
usually specified with reviewing. In consideration of this method,
a requirement is taken into account as a independent Petri Net.
Therefore, it is possible that requirements gradually go into the
concern.

Stage 3: in this stage, we should constitute a requirement net for
each specified requirement in stage 2. According to the definition
of requirement net, we have to identify logical entities for each
requirement net. However, in this stage, identification of logical
entities related to requirement nets is not necessary. This
operation is postponed to stage 8, because it is not needed to
decompose all requirements to logical entities for identifying
aspects. The requirements that have dependencies with other
concerns or requirements should be broken into logical entities.

Stage 4: in this stage, in order to constitute concern nets, we
should specify execution orders for each concern which is
identified in stage 1. Requirements engineers with analyzing
purpose of a concern and associated requirements may elicit
execution orders. Each execution order satisfies one of its
purposes. Also, the number of execution orders has direct relation
with requirements granularity (fine or coarse).

Stage 5: in this stage, according to definition in the Section 3,
we constitute a concern net for each concern that is specified in
the stage 1. For constituting concern nets, we need to requirement
nets and execution orders which are specified in stage 3, 4
respectively. The execution of each concern net implicates that
the proper token is placed in the first place of concern net.
Therefore, for any execution order that exist in a concern net, a
token must be placed in the first place of concern net. If there is
not enough token in first place, the concern net cannot be
executed in the final Petri Nets model correctly. So we cannot
identify aspects in the system.

Stage 6: in this stage, the dependencies, restrictions and
relationships among requirement nets and concern nets must be
identified. For example, restriction of execution order is a kind of
dependency. The dependencies are the direct result of the business
logic that system purpose to support [19]. The relationships is
kind of logic that can be as co-process and co-data, also can take
into account as interpretive relationship [8]. Interpretive
relationships reflect interpreted semantics associations among
concerns (logical).They depend primarily on the context-
dependent interpretation of concern semantics and significance. In
the applying of dependency between two requirement nets, one
new place as temporary place is created. In the temporary place, a
token of dependency is placed. This token is composed of concern
net and requirement net names which causes complete execution
of system. When these dependencies are imposed into the model,
the Petri Nets model mentions to the final system. The model
must be executed in proper form. Lacks of execution model
indicates that dependencies and tokens of Petri Nets are not
defined correctly.

Stage 7: in this stage, for identifying crosscutting concerns
(aspects) following operations should be performed: first, we have
to specify transitions of each concern net that have two or more
than two entrances. Second , if value of their entrances tokens are
different, so entrance token and transition token are taken into the
2-tuple, such as (token1, token2). Therefore, if a transition has
two or more than two entrances with different tokens, for any
different token, there has to be defined separate 2-tuple.

Stage 8: After identification of these 2-tuples, the logical
entities associated with requirement nets in the 2-tuples should be
determined. If there is a logical entity that is in the set of logical
entities of two requirement nets belonging to a 2-tuple, that
logical entity is considered as an entity that has tangling problem.
The concern net which has this requirement net in their set of
requirement nets, considered as crosscutting concern (aspect).
However, a concern net may be has transition with several
entrance, but while the tokens are similar, the transition will not
explain any meaning.

Implementation of the method by Petri Nets provides a number
of collections that includes logical entities and imposing aspects.
It is possible that a share collection exist within them. With
extraction of this logical entities and aspects, we will reach to
structure like table 1. In the table 1, name of logical entities and
imposing aspects are specified.

Table 1. Relating aspects with Logical Entities (LE)

LE n … LE 2 LE 1

 Aspect 1

 Aspect 2

 ...

 Aspect n

5. CASE STUDY
In this section, a case study for description of proposed method

is offered. The case study is a hotel management system [4] which
is explained in following concerns (stage 1):

 C1: Reserve Room :
To reserve a room, you check the room availability, and if a
room is available, you create a reservation.

 C2: Check In Customer
To check in a customer, you assign him to a room and
consume his reservation. At the same time, you create an
initial bill for the customer.

 C3: Check Out Customer
To check out a customer, you collect the payment for the bill.
Once the bill has been paid, the customer is removed from the
room.

 C4: Logging
To log, the system checks operations and if there are changes,
it loges them.

Now that identifying concerns of hotel management system is
done, we should determine requirements of each concern (stage
2). The requirements of any concern are depicted in Figure 4. In
Figure 4, every concern and its requirements are illustrated in the
same simple structure with viewpoints [20, 22].

After the associated requirements for each concern are
specified, we must constitute requirement nets (stage 3). In our
case study, there are ten requirements therefore we have to
constitute ten requirement nets. For instance, the requirement nets
RN11, RN12 for the requirements R11, R12 are depicted in Figure 5
respectively. In these requirement nets, we do not identify logical
entities because this action will be performed afterwards. The
remaining requirement nets of hotel management system will
constitute in the same way.

Concern: Reserve Room
Requirements:

1. Check room availability (R11)
2. Make reservation (R12)

Concern: Check In Customer
Requirements:

1. Assign room (R21)
2. Consume reservation (R22)
3. Create bill (R23)

Concern: Check Out Customer
Requirements:

1. Calculate bill (R31)
2. Pay bill (R32)
3. Empty room (R33)

Concern: Logging
Requirements:

1. Logging (R41)
2. Save log in file/DB (R42)

Figure 4. Concerns and associated requirements for hotel
management system

RN11= (PN11, LE11) RN12= (PN12, LE12)

LE11= LE12=

Figure 5. Requirement nets for R11, R12

In stage 4, we specify execution orders for the concerns. The
execution orders for each concern are depicted in table 2.

Table 2. The execution orders for concerns of hotel
management system

Concern
Name

Name of execution
order

Execution order

C1 EO11 RN11,RN12
C2 EO21 RN21,RN22,RN23
C3 EO31 RN31,RN32,RN33
C4 EO41 RN41,RN42

For instance, execution order of concern C1 is EO11 that RN11,

RN12 have to execute respectively. This means that check room
availability concern has to satisfy before making reservation
concern. In stage 5, we make concern nets. There is an execution
order for each concern therefore in the first place of every concern
net one token has to be placed. For example, concern net CN1 for
concern C1 (Reserve Room) is depicted in Figure 6. The concern
net CN1 composes of two requirement nets and an execution
order. In the concern net CN1 because of existing an execution
order, one token is placed in place p10. Other concern nets are
constituted in the same way.

After constitution of all concern nets, we can identify
dependencies between concern nets and requirement nets (stage
6). In many cases, dependencies and relationships exist between
requirement nets of concern nets. Also, it is possible that some
concern nets have dependencies with other concern nets. The

dependencies of the hotel management system are a kind of
restriction of execution order and interpretive relationships. For
example, in the system, we should create bill and then calculate it,
and also first assigning room concern should performed and then
room should be emptied. These dependencies for two concern
nets, CN2 (check in customer) and CN3 (check out customer) is
depicted in Figure 7.

CN1= (SoR1, SoE1)

SoR1 = (RN11,RN12) SoE1 = (EO11)

Figure 6. Concern net for Reserve Room (C1)

Figure 7. Dependencies between concern nets CN2 and CN3

Figure 8. Final Petri nets Model for hotel management system

In Figure 7, tp1 and tp2 are two places with gray color. These
places are regarded to establish dependencies between
requirement nets (RN21, RN33) and (RN23, RN31). In the temporary
places for any exit arc, a token must be placed in it by related
enter arc, because a requirement net may have dependencies
(more than one) with other requirement nets. Therefore, adequate
tokens must exist in the temporary places for applying
dependencies and execution of the model. Now we have a final
Petri Nets model for hotel management system which is depicted
in Figure 8. The final Petri Nets model must be executed then its
transitions should be examined (stage 7). This action can be
implemented with CPN/Tools and its monitoring capability [21].

The monitoring output of final Petri Nets model of hotel
management system for four transitions R21, R22, R33, R41 is
depicted in Figure 9.

 In Transition R21: <C2, R21><C1, R11>
 In Transition R22: <C2, R22><C1, R12>
 In Transition R31: <C3, R31><C2, R23>
 In Transition R33: <C3, R33><C2, R21>
 In Transition R41: <C4, R41><C1, R11>,

<C4, R41><C1, R12>,
<C4, R41><C2, R21>,
<C4, R41><C2, R23>,
<C4, R41><C3, R33>

Figure 9. The monitoring output in CPN/Tools for hotel
management system

(R11=RN11; R12=RN12; R21=RN21; R22=RN22; R23=RN23; R31=RN31;
R32=RN32; R33=RN33; R41=RN41; R42=RN42) and (C1=CN1; C2=CN2;

C3=CN3; C4=CN4)

In Figure 9, there is a output like <C2, R21><C1, R11>. This 2-
tuple indicates that if minimum a share logical entity exist in the
requirement nets RN21 and RN11 then two concern nets CN1, CN2
can be considered as aspect, because the requirement nets has
tangling problem. In here, this share logical entity that cause
tangling problem is "Room". Action for identifying logical entities
must be performed for requirement nets which appear in
monitoring output. Logical entities for monitoring outputs
requirement nets are listed in table 3 (stage 8).

Table 3. Logical entities of requirement nets for hotel
management system

Logic entity
Requirement

nets

Room RN11

Reservation RN12

Room RN21

Reservation RN22

Bill RN23

Bill RN31

Room RN33

Room, Reservation, Bill RN41

We continue this survey (monitoring output) until it is
determined that there is share logical entities or not. When there
are sharing entities, face to face concerns can be considered as
aspect. In the hotel management system because of existing share
entities in all requirements, four concerns are viewed as aspect
and we call them A1, A2, A3 and A4. Any concern in the system as
aspect has a series of logical entities that aspect is imposed to
them. These logical entities are sharing entities and are depicted in
table 4.

Table 4. Relating aspect with logical entities in hotel
management system

Bill Reservation Room

 √ √ A1

√ √ √ A2

√ √ A3

√ √ √ A4

6. RELATED WORKS
Rashid [7] provide the AORE model and ARCaDe tools for

describing components and requirements-level aspects. Examples
of these aspects are compatibility, availability. This work build on
ViewPoints model [20], which is intended to support the
integration of heterogeneous requirements specified from multiple
perspective. In AORE model, concern identification relies on
domain knowledge of developers, and also concerns are non-
functional properties. We use a similar means for identification of
concerns in stage one of proposed method and are considered
concerns as functional and non-functional properties. Our method
uses a formal method for identification of aspects but AORE
model use an informal approach.

Elisa [6] proposed a Theme approach for viewing the
relationships between behaviors in a requirements document,
identifying and isolating aspects in the requirements, and
modeling those aspects using a design language. In Theme
approach, Theme provides support for aspect-oriented
development at two levels. At the requirements level, Theme/Doc
and at the design level Theme/UML [25, 26]. Theme/Doc can be
used as a method for identifying concerns in the stage one of our
method. Also, Theme approach presents an informal method for
identification of aspects.
D. Xu [10] firstly incorporated the features of AOP into Petri Net
and extended Petri Nets to support AOM. His work is based on
Predicate/Transition Nets (PrT nets). Lianwei Guan [11] presents
a Petri Net-based approach to support aspect-oriented modeling.
In this approach, software systems are modeled as aspect nets and
base net, then a woven mechanism is given to compose the aspect
nets and base net. They also give four mechanisms to model the
order constraints and dependencies among aspects that supposed
on the Same Joint Point (SJP), and give a solution to detect
conflict relations among the aspects. Two method based on Petri
Nets [10, 11] are not present a method for identification of
aspects. However, these methods can be used in our method as a
complementary approach.

7. CONCLUSIONS
This paper has offered a formal method based on Petri Nets for

specification of crosscutting concerns and identification of
aspects. In the proposed method, a software system was

considered as sets of concern nets. Each concern net is constituted
as a set of requirement nets and execution orders. The
requirement nets have logical entities which will be used for
identification of aspects and may have dependencies with other
requirement nets. For identification of aspects, we execute the
final Petri Nets model and then monitoring each transition. In the
monitoring process, if a transition has following conditions: (1)
each transition has two or more than two entrances; (2) token of
entrances are different; (3) There is a share entity between two
various entrances, we consider its dominant concern net of
transition as aspect. Offering a formal method based on Petri Nets
for identification of aspects provides some advantages. One
advantage is that we make sure of what was considered as an
aspect is crosscutting concern. Therefore, an aspect with high
finality can be considered in the next development phases.

There is still shortcoming in the proposed method. This method
identify aspects using Petri Nets but cannot determine join-points
with more detail and the circumstances of imposing aspects (after,
before, around) to logical entities, therefore, still there are works
have to be done to extend the method in the future.

8. REFERENCES
[1] G. Kiczales, et al., "Aspect-Oriented Programming",

European Conf. on Object-Oriented Programming (ECOOP),
1997, Springer, LNCS 1241, pp. 220-242.

[2] E. W. Dijkstra, A Discipline of Programming. Englewood
Cliffs, NJ: Prentice Hall, 1976.

[3] http://wikipedia.org/cross-cutting_concern

[4] I. Jacobson, Pan-Wei Ng, Aspect-Oriented Software
Development with Use cases, Addison-Wesley, ISBN: 0-
321-26888-1, 2004.

[5] J. Grundy, "Aspect-Oriented Requirements Engineering for
Component-based Software Systems", 4th IEEE Int'l
Symp.on RE, 1999, IEEE CS, pp. 84-91.

[6] E. Baniassad, S. Clarke, "Theme: An Approach for Aspect-
Oriented Analysis and Design", Int'l Conf. Software
Engg.(ICSE), 2004, IEEE CS, pp. 158-167.

[7] A. Rashid, A. Moreira, J. Araujo, "Modularisation and
Composition of Aspectual Requirements", 2nd Int'l
Conf.Aspect-Oriented Soft-ware Development, 2003, ACM,
pp.11-20.

[8] S. M. Sutton and I. Rouvellou, "Modeling of Software
Concerns in Cosmos", International Conference on Aspect-
Oriented Software Development, 2002, ACM, pp. 127-133.

[9] R. Chitchyan, A. Rashid, P. Rayson, R. W. Waters,
"Semantics-based Composition for Aspect-Oriented

Requirements Engineering", Int'l Conf. Aspect-Oriented
Software Development (AOSD), 2007, ACM.

[10] D. Xu and K. E. Nygard, "Threat-driven modeling and
verification of secure software using aspect-oriented Petri
nets", IEEE Transactions on Software Engineering,
32(4):265–278, 2006.

[11] Lianwei Guan, Xingyu Li, Hao Hu, "A Petri Net-based
Approach for Supporting Aspect-Oriented Modeling", 2nd
IFIP/IEEE International Symposium on Theoretical Aspects
of Software Engineering, 2008.

[12] W.M. P. van der Aalst, "The application of Petri nets to
workflow management", Journal of Circuits, Systems, and
Computers, 8(1):21–66, 1998.

[13] T. Murata, "Petri nets: Properties, analysis and applications",
Proceedings of the IEEE, 77(4):541–580, 1989.

[14] http://www.research.ibm.com/hyperspace/ConcernSpaces.ht
m.

[15] Joseph D. Gradecki, Nicholas Lesiecki, Mastering AspectJ:
Aspect-Oriented Programming in Java, 2003.

[16] Tarr, P., Ossher, H., Harrison, W., and Sutton Jr.,S. M. 1999,
"N degrees of separation: Multi-dimensional separation of
concerns", In 21st Int'l Conf. Software Engineering (ICSE),
(Los Angeles). IEEE, 107119.

[17] Merriam-Webster. Merriam-Webster collegiate dictionary
online, http://www.merriam-webster.com.

[18] IEEE. 2000. IEEE recommended practice for architectural
description of software-intensive systems. IEEE
Std.14712000.

[19] Binder, R. V, "Testing Object-Oriented Systems: Models,
Patterns and Tools", Addison-Wesley, 2000.

[20] A. Finkelstein and I. Sommerville, "The Viewpoints FAQ."
BCS/IEE Software Engineering Journal, 11(1), 1996.

[21] http://www.daimi.au.dk/CPNTools/

[22] I. Sommerville, Software Engineering, Seventh edition,
Addison-Wesley, 2005.

[23] A. Rashid, P. Sawyer, A. Moreira, J. Araujo, "Early Aspects:
A Model for Aspect-Oriented requirements Engineering",
RE’02, 2002.

[24] Aspect Oriented Software Development. AOSD Webpage.
URL http://aosd.net/, 2002.

