
On the Role of Features and Goals Models in the Aspect-
Oriented Development of Software Product Line

Lyrene Silva
Federal University of Rio Grande do Norte

Departamento de Informática e Matemática Aplicada
BR 101, CEP 59078-970, Natal-RN, Brazil

lyrene@dimap.ufrn.br

Thais Batista
Federal University of Rio Grande do Norte

Departamento de Informática e Matemática Aplicada
BR 101, CEP 59078-970, Natal-RN, Brazil

thais@ufrnet.br

Sergio Soares

Federal University of Pernambuco
Centro de Informática,

Av. Luis Freire, CEP 50.740-540, Recife–PE, Brazil

scbs@cin.ufpe.br

Lidiane Santos

State University of Rio Grande do Norte
Departamento de Informática

Av. Ayrton Sena, CEP 59.080-100, Natal-RN, Brazil

diane_lid@hotmail.com

ABSTRACT

Requirements of a Software Product Line (SPL) are usually

captured in the form of a feature model, which represents the

product line variation model, but this model lets several

requirements details aside, such as the specification of functional

and non-funcional requirements. Due to the crosscutting nature of

SPL variations, researchers are using aspect-oriented techniques,

to deal with such crosscutting concerns. In this context, the sooner

these aspects can be identified the better, influencing the SPL and

products architecture upfront. In this work we propose a Product

Line extension to an aspect-oriented intentional model. The

extended model provides both variability information and

requirements details, promoting a natural blending of SPL and

aspect-oriented architectural abstractions. We present the mapping

between the SPL and the modeling approach abstractions and

discuss two development scenarios: starting with a plain feature

model and generating the extended aspect-oriented intentional

model and the opposite approach.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications.

General Terms

Documentation, Design, Languages.

Keywords

Software Product Lines, Requirements Model, Features Model

1. INTRODUCTION
In Software Product Line (SPL) development [5], the product line

requirements are usually captured in the form of a feature model

[10], which represents the product line variation model, but it lets

several requirements details aside, mainly if these details are

commonalities, for instance, a mobile phone should make and

receive calls, and usually this feature would not be represented in

the feature model of a mobile phone. The feature model does not

distinguish functional and non-functional requirements.

In software development in general, several requirements,

when implemented, will derive concerns that are tangled with and

spread over other concerns, the so-called crosscutting concerns

[11]. In the SPL context, it is expected that these concerns are part

of variation points implementations, therefore affecting several

products. This situation will demand these concerns to be plugged

either in or out of the SPL' products.

Such demand led to the use of aspect-oriented (AO)

techniques [11], modeling included, with SPL development [1].

The use of aspects to implement product variations allows

variations to be easily added or removed from a product

configuration, without polluting the code with conditional

compilation code, an alternative strategy that hinders program

legibility leading to maintainability' issues [1].

In this context, the sooner these aspects can be identified the

better, because they can be incorporated as part of early models,

therefore influencing the SPL and products architecture upfront,

instead of demanding changes only during design or

implementation tasks.

One proposal to model a system' requirements including

early aspects specification is using AOVgraph [14] an aspect-

oriented intentional model. AOVgraph provides mechanisms to

analyze positive and negative relationships among functional and

non-functional requirements as well as to crosscutting concerns

separation and composition.

In this work we intend to propose PL-AOVgraph, a Product

Line extension to AOVgraph that includes variability information.

PL-AOVgraph models will fill the gap that the feature models

have regarding to the SPL requirements. The model will provide

both variability information and requirements details. PL-

AOVgraph is proposed as a seamless extension of AOVgraph. It

promotes a natural blending of software product line and aspect-

oriented architectural abstractions. Instead of burdening the

requirements model with new abstractions to express product line

specification, PL-AOVgraph adapts existing AOVgraph

abstractions.

Figure 1. (a) Mobile Media Feature Model (b) Feature model notation

We also discuss possible SPL development scenarios, such as

starting with a feature model and then generating a PL-

AOVgraph, and vice-versa. In fact, the feature model can be

automatically generated from the PL-AOVgraph, providing a

simpler view and guaranteeing models consistency.

The paper is structured as follows. Section 2 contains the

background and the running example. Section 3 presents the PL-

AOVgraph extension. A discussion is presented in Section 4 and

related work at Section 5. Finally, Section 6 summarizes the paper

with concluding remarks and future work.

2. BACKGROUND
In this section we present the background of this work. Section

2.1 contains a brief description about feature model. Section 2.2

presents our running example – the Mobile Media system. Section

2.3 contains a brief description of AOVgraph.

2.1 Feature Model
A feature is a system property that is relevant to some

stakeholders. Features are organized in feature diagrams. A

feature diagram is a tree with the root representing a concept and

its descendent nodes are features. Feature models are feature

diagrams plus additional information such as feature descriptions,

binding times, priorities, or stakeholders, among others.

Feature modeling is a key approach to capturing and

managing common and variable features in a SPL [10]. They are

used during early stages of SPL development for scoping the

system family, later as a basis for building the product line

architecture, and finally during the application engineering for

guiding the requirement elicitation and analysis. Feature models

were proposed as part of the Feature-Oriented Analysis method

(FODA) [10].

There is a series of distinctive types of features identified:

• Concrete features such as data storage or functions that may

be realized as individual components;

• Aspectual features that may affect several components and

can be modularized using aspect technology;

• Abstract features such as performance requirements that are

usually mapped to a configuration of components and/or aspects;

• Grouping features may represent variation points and they

are mapped to a common interface of plug-compatible

components.

2.2 Running Example – Mobile Media
MobileMedia (MM) [19] is a software mobile product line that

provides support to manage (create, delete, visualize, play, send)

different kinds of media (photo, music) on mobile devices. It

extends an existing SPL, MobilePhoto, by including mandatory,

optional, and alternative features. There are different

MobileMedia implementations in Java, AspectJ and CaesarJ. Each

implementation has 10 releases, where each release contains

additional functionalities with respect to its predecessor release.

Releases 1 to 5 deal only with photos and release 6 includes new

features: store, play, and organize music. While release 7 includes

features about videos.

Figure 1(a) illustrates the MM Feature Model of release 7.

This model contains mandatory features representing

commonalities such as AlbumManagment, MediaManagement

and MediaSelection. The optional features are: Favourites,

Sorting, Copy Media, SMS Transfer, CapturePhoto and

CaptureVideo. Finally, the alternative (inclusive or) features are

the media types: Photo, Music and Video. Figure 1(b) shows the

feature model notation [6] used in this work.

2.3 AOVgraph
AOVgraph [14] is an aspect-oriented intentional model,

represented by AND/OR decomposition graphs. Its relationships

map not just positive and negative conflicts between requirements

(goals, softgoals, and tasks), they also map how these

requirements crosscut each other. Furthermore, they represent

choices of different options of how a given requirement may be

achieved.

Requirements are represented by softgoals, goals, and tasks –

usually softgoals are related to non-functional requirements, tasks

are functional requirements and goals represent organizational

objectives or the reason to select some group of tasks.

Legend

Identify
[user] Authentic

ate [user]

Validate
[access]

Confidentiality

Security

Integrity

Availability

and

and

and

Authorize
[access]

and

and and
and

Softgoal

Task

Goal

goal_model Security (GM1) {
 softgoal Security (SG1){
 softgoal Confidentiality (SG2; and){
 task Authorize [access] (T1; and){
 task Identify [user] (T2; and){}
 task Authenticate [user] (T3; and){}
 task Validate [access] (T4; and){}
 }}
 softgoal Integrity (SG3; and){}
 softgoal Availability (SG4; and){}
 }
 goal Restricted access to employees (G1){
 task_ref (T1; and){}}
 correlation (help) {from G1 to SG2}
}

Restricted
access to
employees

and

help

(a) (b)

Figure 2. Example of AOVgraph model: (a) graphical notation and (b) textual notation

Figure 3. Product-line development process using PL-AOVgraph and feature model

Decompositions, dependences and conflicts are represented by

contributions, correlations or crosscutting relationships.

Contributions can be AND, OR, or XOR labeled. Correlations can

be MAKE, HELP, UNKNOWN, BREAK, and HURT labeled.

While crosscutting relationships register how the requirements are

scattered and tangling, through pointcuts, advice, and intertype

declarations [14].

Figure 2 illustrates an example of an AOVgraph model, in (a)

its graphical representation and in (b) its textual representation. In

this example, we can see that the Security softgoal can be

decomposed into Integrity, Availability and Confidentiality

softgoals; Confidentiality is reached by Authorize [access] task;

which is decomposed into Identify [user], Authenticate [user] and

Validate [access] tasks; Authorize [user] contributes also to

Restricted access to employees goal, which is correlated with

Confidentiality.

3. PROPOSAL
In order to promote software product-line engineering in the early

stages of the software development process, we propose a bi-

directional mapping between two modeling languages: Feature

Model and PL-AOVgraph. Section 3.1 presents details of PL-

AOVgraph, an extension of AOVgraph to deal with variability on

SPLs, and Section 3.2 presents details of our approach to map PL-

AOVgraph and feature model.

3.1 PL-AOVgraph
In this work we extend AOVgraph to consider issues of the SPLs

domain, such as variability, in the SPL requirement model. The

idea is to use the existing abstractions and to extend AOVgraph

model without burdening the original model, in the following

way: creating four new properties named isFeature, typeFeature,

groupFeature and cardinality. The first one, determinates if a

goal, softgoal, or task is to be represented as a feature in the

feature model; the second one represents which type of feature a

goal, softgoal, or task will represent in the feature model, this

property was added to allow users choice if a element in PL-

AOV-graph is to be a feature, it will be better explained in future

work; the third property defines which features are grouped; and

the forth property represents cardinality of features and groups of

features. This extension does not violate AOVgraph foundations,

nor makes the model harder, because it only adds properties, a

secondary element in AOVgraph. Furthermore, an inc-or label

was added into PL-AOV-graph, in order to represent inclusive or

contributions.

Table 1. Summary of the mapping rules

Feature model � PL-AOVgraph

Root of feature model Name of goal model

Hierarchy of features Hierarchy of goals, softgoals, and tasks

Feature Task, goal or softgoal

 Mandatory Contribution = and

Property [typeFeature=mandatory;

cardinality=(1,n)]

 Optional Contribution = or

Property [typeFeature=optional;

cardinality=(0,n)]

 Alternative

xor/inc-or

 Contribution = xor/inc-or

Property [typeFeature=alternative;

 groupFeature = {};

cardinality=(1,1)/(1,n)]

Constraint = “implies

the non-selection”

 Correlation (hurt)

Constraint = “implies” Correlation (make)

Feature reference Task_ref, goal_ref, or softgoal_ref

 Table 1 summarizes how each element in a feature model is

represented in PL-AOVgraph: Features are abstracted by tasks,

goals, and softgoals; relations between features are abstracted by

contributions; and variability is abstracted by properties.

3.2 Process
Figure 3 shows how to use Feature Model and PL-AOVgraph to

promote aspect-oriented product-line development. In the

beginning of the process, there are two independent alternative

flows: (i) the first (illustrated above with dotted line) begins with

PL-AOVgraph modeling after which we transform this model into

a feature model; and (ii) the second flow (illustrated below with

dotted line) begins with Feature modeling after which we

transform this model into a PL-AOVgraph model. In both cases,

the third step is to analyze the created models in order to identify

mistakes and omissions. If there are changes to be done, then the

analyst goes back to model PL-AOVgraph or feature model,

otherwise configuration and aspectual architecture models can be

generated in the design activity, using appropriated approaches

[14].

With this process, we can observe three possible situations: (i)

the process only begins with feature modeling; (ii) the process

only begins with PL-AOVgraph modeling; and (iii) the process

begins with both feature and PL-AOVgraph modeling. In the first

and second situations, we generate the other model as another

view of the system, which will be used to help understand the

system domain and to bridge the gap between requirements and

architecture or configurations. However, in the third situation

where both models are available, it is also necessary guarantee the

consistency between them and to keep track of traceability

relationships between them. Besides the consistency, it is also

important to notice that starting from a Feature Model, generating

the PL-AOVgraph and then generating the Feature Model back,

will probably generate a Feature Model different from the first

one. In this paper, we explore the first two situations, while the

third one will be explored in future work. Therefore, in this paper

we deal with bi-directional mapping in order to promote the

product-line development: i) map PL-AOVgraph into Feature

model and ii) map Feature model into PL-AOVgraph.

Bi-directional mapping advantages are: (i) there is a feedback

among these models, making the generated models richer; (ii) we

can guarantee consistency between them; (iii) we can promote

completeness in both models; (iv) we can generate aspectual

architecture models from features models; and (v) we can generate

configuration models from PL-AOVgraph models.

On the other hand, the main drawback is the overhead to

keep both models consistent

These transformations are based on the semantic and

syntactic elements from both models. Therefore, although these

models have divergent goals, they have some similarities, such as:

both of them are structured as trees; they represent functional and

non-functional requirements and they have some similar

relationships. However, they also have some semantic differences,

such as: PL-AOVgraph focuses on representing all requirements

of a system, while Feature models focus on representing the

variability; PL-AOVgraph represents the system in terms of goals,

softgoals, and tasks, while Feature models represent the system in

terms of features.

Table 1 summarizes the mapping rules to transform these

models each other, and in the following sections we detail these

mapping rules.

3.2.1 Feature model to PL-AOVgraph
The process to map feature model into PL-AOVgraph consists of

the following five steps:

1. The root of feature model is transformed into a goal

model in PL-AOVgraph;

2. Each feature is transformed into a task. If the feature is

optional, then it is transformed into a task with

contribution relationship or; if it is mandatory, it is

transformed into a contribution relationship labeled

and; if it is alternative, it is transformed into a

contribution relationship labeled xor or inc-or

depending on the cardinality of the feature group;

3. Furthermore, each task is annotated with the following

properties: isFeature=”yes”; typeFeature=”mandatory |

alternative | optional”;

4. Constraints (”implies | implies the non-selection”) are

transformed into correlation relationships labeled make

or hurt;

5. If there are many constraints to a same feature (for

instance, A implies B, C, and D; and B, C and D’s father

is X), this feature generates a crosscutting relationship,

on which: it will be the pointcut (A will be pointcut);

the features implicated will be transformed into advice

(B, C, and D will be advice); and them father will be the

source of relationship (X will be source).

Figure 5 shows an example of a PL-AOVgraph generated

from a feature model. We can see that all features are transformed

into tasks, and the hierarchy between them follows the same

hierarchy of features. Figure 4 shows how properties are modeled

in the textual representation of PL-AOVgraph.

Figure 4. Example of “properties” on AOVgraph

specifications

Figure 5. Example of transformation between Feature Model and PL-AOVgraph

Figure 6. Example of transformation between PL-AOVgraph and Feature Model

3.2.2 PL-AOVgraph to Feature Model
The process to map PL-AOVgraph into feature model consists of

the four following steps:

(1) Each goal model is transformed into the root of a feature

model;

(2) Each task, goal and softgoal is transformed into a feature

unless there is a property called “isFeature=no”. If there are not

these properties, then the kind of contribution defines the type of

feature: or to optional, and to mandatory, xor to alternative xor,

and inc-or to alternative inc-or features;

(3) References to goals, softgoals, and tasks, represented in PL-

AOVgraph by task_ref, goal_ref, and softgoal_ref, are

transformed into: (i) Ref features – if this element is defined in the

same goal model and (ii) into features with the symbol – if this

element is defined in another goal model (in accordance with the

notation defined in Figure1(b);

(4) Advice of crosscutting relationships are transformed into

features in accordance with the following rules: each pointcut will

be a feature that group the subfeatures generated by tasks, goals,

and softgoals from advice.

Figure 6 shows an example of a Feature Model generated

from a PL-AOVgraph by following the mapping steps.

4. DISCUSSION
As presented in Section 3, this work proposes a bi-directional

mapping between the Feature Model and PL-AOVgraph in order

to promote software product-line engineering. This section relates

our experience with this mapping, showing our difficulties and

drawbacks.

• In the feature model notation used in this work it is not

possible to identify if a feature is a functional or non-

functional. Therefore, we decided to map each feature

(functional or not) into a task. This is not always the better

option, this problem can be solved if we use a notation which

makes abstract and concrete features different, as PL-

AOVgraph does. This situation shows that a feature model

does not distinguish the type of requirements.

• Names generated from feature models cannot be appropriated

to tasks in PL-AOVgraph, since task names should contain a

verb. This information could also be used to identify if a

feature is functional or non-functional and thus map it into a

softgoal or task. For now, we did not address this issue.

• PL-AOVgraph is more detailed than the feature model, since

its goal is to represent all requirements of a system, while the

feature model aims to model commonalities and variabilities.

Therefore, with this mapping we can generate a feature model

excessively detailed making the variability visualization less

evident. On the other hand, we can generate PL-AOV-graph

excessively summarized, making the representation of

requirements insufficient.

• While the Mobile Media case study has allowed us to define

elements to define the proposed mapping rules, we consider

these rules as initial rules which can be further refined.

On the other hand, we could see with this work that although

these models have different purposes and semantic differences,

there are enough similarities to work with them at the same time

and that one can give feedback to the other.

5. RELATED WORK
We can cite some approaches related to our work, as following:

Yu et al [18] define the mapping between goal model and feature

model, but in their approach the goal model does not represent

grouped features and cardinality. Silva et al [13] map Aspectual

i* to feature model. In this mapping, Aspectual i* is not also

sufficient to represent all variability of a feature model. Therefore,

Borba and Silva [2] extend i*, creating new relationships in order

to represent this variability.

Our work is similar to these approaches, since it establishes a

mapping between PL-AOVgraph and feature model and we also

have created some elements in PL-AOVgraph in order to

represent completely variability. However, there are two main

differences: (i) the elements created in PL-AOVgraph are defined

as properties, which are less intrusive elements than the elements

created by Borba and Silva in i* [2]; (ii) our approach does not

aim to substitute PL-AOVgraph for the feature model, or vice-

versa. Our approach states that both models are essential to SPL

engineering, and thus they should be developed at the same time.

In this way, the engineer has two views, in early stages of the

software development, that make it possible to analyze, model and

make decisions about the SPL development.

6. CONCLUSION
In this work we propose a bidirectional mapping between PL-

AOVgraph and feature models. The PL-AOVgraph model

provides both variability information and requirements details

while feature models do not include requirements details. We

presented a mapping between SPL and AOVgraph abstractions

and discussed two possible development scenarios: starting with a

feature model or a PL-AOVgraph model and generation the other.

Steps were proposed to achieve one model from the other one.

As future work we are going to refine some mapping rules,

such as those related to constraints and crosscutting relationships;

define a traceability mechanism which manages and propagates

changes made in PL-AOVgraph or feature models; develop a tool

to automate these rules. We also want to evaluate how the use of

both models in real environments makes the SPL development

easier. Another future work is considering alternative variability

models and also map them from/to PL-AOVgraph.

7. ACKNOWLEDGMENTS
This work is part of the Latin-American Aspect-Oriented Software

Development network (LA-AOSD), supported by CNPq. Sérgio

Soares is partially supported by CNPq, grant #309234/2007-7.

Thais Batista is partially supported by CNPq, grant

#301880/2007-7.

8. REFERENCES
[1] Alves, V. et al. Extracting and evolving code in product lines with

aspect-oriented programming. Transactions on Aspect-Oriented

Software Development (TAOSD): Special Issue on Software

Evolution, 2007.

[2] Borba, C., Silva, C. A comparison of goal-oriented approaches to

model software product lines variability. In: Workshop on

Requirements, Intentions and Goals in Conceptual Modeling in

conjunction with the 29th International Conference on Conceptual

modeling, pp. 244-253, Gramado, RS, Brazil (2009)

[3] Bowman, M., Debray, S. K., and Peterson, L. L. 1993. Reasoning

about naming systems. ACM Trans. Program. Lang. Syst. 15, 5

(Nov. 1993), 795-825. DOI=

http://doi.acm.org/10.1145/161468.161471.

[4] Brown, L. D., Hua, H., and Gao, C. 2003. A widget framework for

augmented interaction in SCAPE. In Proceedings of the 16th Annual

ACM Symposium on User interface Software and Technology

(Vancouver, Canada, November 02 - 05, 2003). UIST '03. ACM

Press, New York, NY, 1-10. DOI=

http://doi.acm.org/10.1145/964696.964697

[5] Clements, P. and Northrop, L. Software Product Lines: Practices and

Patterns. Addison-Wesley, 2002.

[6] Czarnecki, K., Kim, C. H. P. Cardinality-Based Feature Modeling

and Constraints: A Progress Report. In: Proceedings of the

OOPSLA’05 - Workshop on Software Factories, 2005, USA. ACM

1-59593-193-7/05/0010

[7] Ding, W. and Marchionini, G. 1997 A Study on Video Browsing

Strategies. Technical Report. University of Maryland at College

Park.

[8] Forman, G. 2003. An extensive empirical study of feature selection

metrics for text classification. J. Mach. Learn. Res. 3 (Mar. 2003),

1289-1305.

[9] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new device for

three-dimensional input. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (The Hague, The

Netherlands, April 01 - 06, 2000). CHI '00. ACM Press, New York,

NY, 526-531. DOI= http://doi.acm.org/10.1145/332040.332491

[10] Kang, K. C. et al. Feature-oriented domain analysis feasibility study.

Technical Report CMU/SEI-90-TR-21, ADA235785, Software

Engineering Institute, 1990.

[11] Kiczales, G. et al. Aspect-Oriented Programming. In European

Conference on Object-Oriented Programming, ECOOP'97, LNCS

1241, pp 220-242. Springer, 1997.

[12] Sannella, M. J. 1994 Constraint Satisfaction and Debugging for

Interactive User Interfaces. Doctoral Thesis. UMI Order Number:

UMI Order No. GAX95-09398., University of Washington.

[13] Silva, C., Alencar, F., Araújo, J., Moreira, A., Castro, J.: Tailoring

an Aspectual Goaloriented Approach to Model Features. In: 20th

International Conference on Software Engineering and Knowledge

Engineering (SEKE'08), pp. 472-477, Knowledge Systems Institute

Graduate School, San Francisco, CA, USA (2008)

[14] Silva, L. F. et al. On the Symbiosis of Aspect-Oriented

Requirements and Architectural Descriptions. LNCS 4765, pp 75-

93. Springer, 2007.

[15] Spector, A. Z. 1989. Achieving application requirements. In

Distributed Systems, S. Mullender, Ed. Acm Press Frontier Series.

ACM Press, New York, NY, 19-33. DOI=

http://doi.acm.org/10.1145/90417.90738

[16] Tavel, P. 2007 Modeling and Simulation Design. AK Peters Ltd.

[17] Y.T. Yu, M.F. Lau, "A comparison of MC/DC, MUMCUT and

several other coverage criteria for logical decisions", Journal of

Systems and Software, 2005, in press.

[18] Yu, Y., Leite, J.C.S.P., Lapouchnian, A., Mylopoulos, J.

Configuring features with stakeholder goals. In: ACM Symposium

on Applied Computing (SAC), pp. 645-649. ACM Press, Brazil

(2008).

[19] Young, T. Using AspectJ to Build a Software Product Line for

Mobile Devices. MSc Dissertation. University of British Columbia,

August 2005.

