
Are Themes and Use Cases the Same?

Valentino Vranić
Institute of Informatics and Software Engineering

Faculty of Informatics and Information
Technologies

Slovak University of Technology
vranic@fiit.stuba.sk

Pavol Michalco
Institute of Informatics and Software Engineering

Faculty of Informatics and Information
Technologies

Slovak University of Technology
pavol.michalco@gmail.com

ABSTRACT
Theme/Doc and use cases are two prominent approaches to
aspect-oriented analysis. They have been developed inde-
pendently and up to now, there have been no attempts to
analyze how they are connected to each other. This paper
explores the extent to what themes and use cases can be
considered the same by developing a process of the transfor-
mation of themes into use cases and the reverse one. Large
similarities have been revealed between themes and use cases
with respect to expressing aspect-oriented decomposition,
relationship to functional decomposition, and generalization.
Main differences lie in the way themes and use cases are de-
scribed, naming convention, lack of actors in themes, and
lower level character of some themes. Despite the differ-
ences, most of the themes can be transformed directly into
use cases and vice versa with a quite straightforward deriva-
tion of the relationships among them.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.2 [Software Engineering]: Design Tools and
Techniques

General Terms
Theme, use case, aspect-oriented analysis, feature

1. INTRODUCTION
Theme [1] is a comprehensive approach to aspect-oriented
analysis and design with its analytical part—Theme/Doc—
being a kind of conceptual modeling. Themes, the basic
notion of the Theme approach, seem to be close to use cases,
a technique of choice in contemporary software analysis. Ivar
Jacobson and Pan-Wei Ng showed that use cases not only
can be used in aspect-oriented development, but that they
are intrinsically aspect-oriented [4].

A way of transforming a Theme/Doc model into a use case
model and vice versa is proposed in this paper showing

such a process is feasible and pointing out detailed differ-
ences and commonalities between use cases and themes. It
demonstrates that despite Theme/Doc lacks the elements
that would correspond to actors, flows, or extension points,
most themes can be transformed directly into use cases and
vice versa with a quite straightforward derivation of the rela-
tionships among them. This shows that these two indepen-
dently developed techniques have common grounds giving
more credibility to both of them for their use in aspect-
oriented analysis. In practice, however, this means that use
cases as a widely accepted analysis technique can be used
instead of Theme/Doc even when it is to be followed by
Theme/UML, the design part of the Theme approach, with
or without an explicit transformation into themes.

The rest of the paper is structured as follows. Section 2 in-
troduces the Theme/Doc approach by a brief example. Sec-
tion 3 introduces the process of transforming themes into
use cases, while Sect. 4 introduces the reverse transforma-
tion. Section 5 summarizes equivalence of Theme/Doc and
use case modeling mechanisms and discusses potential ben-
efits of each approach. Section 6 discusses related work, and
Sect. 7 concludes the paper.

2. THEME/DOC: AN EXAMPLE
Theme/Doc is concerned with the identification and model-
ing of themes where a theme is a modularization construct
that encapsulates a concern [8]. Let us present the example
Theme/Doc model used in our study.

2.1 Theme Identification
Assume we are developing a retail support system. The
application will embrace store management, price manage-
ment, and cash desk functionality provided simultaneously
on several computers in the store. The specification of re-
quirements is presented in Fig. 1.

The corresponding themes are displayed in Fig. 2. The se-
mantics of themes is expressed by the requirements it is con-
nected to. Each requirement may involve many themes, and
several requirements may concern the same theme.

2.2 Aspect Separation
The goal of Theme/Doc is to separate the exact seman-
tics of each theme by rewriting the requirements in such a
way that each requirement remains associated with only one
theme. By this, a set of requirements exclusively associated
with a theme virtually become its (only) description. The

1. The application will record and maintain the product
quantity in the stock in the central database.

2. The storekeeper can remove products from the
database.

3. The storekeeper can add products into the database.

4. The storekeeper can change the product quantity in
the database.

5. The cashier can bill the item by manually entering the
bar code or with a bar code reader.

6. Only the products recorded in the database can be
billed.

7. The billed items can be removed from the bill until it
has been closed.

8. The billed item removal must be approved by a store
manager by entering his authentication data.

9. The billed items will be printed on the cash desk
bill as they are entered. The bill will consist of the
store name, billed items, information on removed billed
items, the total amount of money to be paid, and date
and time.

10. The product price can be entered or modified only by
a properly authenticated store manager.

Figure 1: The retail support application require-
ments.

themes that represent crosscutting concerns cannot be sep-
arated this way unless the crosscutting is made explicit by
transferring it directly to the affected themes.

There are five shared requirements in our example: R6, R7,
R8, R9, and R10. They are marked gray in Fig. 2. R8
is about removing the billed item, while the theme bill is
about billing in the sense of adding items to the bill, which
is covered by R7, so the connection between R8 and the
bill theme can be omitted. The removed item printing can
be separated from R9 into a new requirement R11, so the
connection between R9 and the remove-item theme can be
omitted (see Fig. 3).

While we managed to remove two connections, we have not
fully resolved any shared requirements. If no further re-
quirement rewriting can help to isolate requirements, the
remaining requirement sharing is due to the crosscutting
nature of some themes. Such themes are identified as be-
ing dominant with respect to some requirements they share
with other themes. A crosscutting theme remains the only
theme associated with the requirements it dominates.

In our example, print-bill dominates requirements R9 and
R11, while the approve dominates requirements R8 and R10.
This is displayed in the so-called crosscutting view. Figure 4
presents the crosscutting view in our example (the themes
with no shared requirements have been omitted). The cross-
cutting is denoted by arrows (in the original notation ren-
dered as thick shaded arrows).

There are cases of requirements sharing in which it is not
possible to determine the dominant theme. Such cases are
indicated by dotted edges between themes marked by re-
spective requirement number and postponed to design. In
our example, there are two such requirements: R6 and R7.

identify-product

approve

bill

R1

R6

R9

R2

R10

R8
R7

R5

remove-itemmodify-price

change-quantity
print-bill

R4

add-product

R3

remove-productrecord-quantity

Figure 2: Themes in the retail support application.

9. The billed items will be printed on the cash desk bill
as they are entered. The bill will consist of the store
name, billed items, the total amount of money to be
paid, and date and time.

11. The removed items will be printed on the cash desk
bill as they are entered.

Figure 3: The rewritten requirements.

3. TRANSFORMING THEMES INTO USE
CASES

As we saw, both themes and use cases represent functional-
ity. Although use case names are usually quite self-explanato-
ry, while theme names are hard to understand without refer-
ring to associated requirements,1 they are expressed in the
same active form.

Use cases are not just any functionality, and it may seem
themes are, but this holds only in initial phases of auto-
mated theme identification. Real themes represent only a
fraction of the initial set of themes. The process of use case
identification is similar to theme identification. Use cases
are even acknowledged as one of the sources of themes [1].

Possible relationships between themes are similar to those
between use cases. This is most obvious with the crosscut-
ting relationship between themes and extend relationship
between use cases, but also so with grouped and unified
themes.

Grouped themes resemble include relationship between use
cases. Grouped themes—denoted as subthemes—are sup-
posed to be “called” by their grouping theme.

Unified themes look as a rudimentary form of generaliza-
tion. Actually, they may be viewed as specializations of a
unifying theme created to represent each one of them. For
that, unified themes have to be close enough to each other.
If they are the same, then the unification is just a synonym

1Newer literature on Theme employs the use case naming
scheme [8].

identify-product

approve

bill

R11

R10

R8

R5

modify-price

print-bill

remove-item

R6

 R7

R9

Figure 4: The crosscutting theme view.

substitution.

One significant difference between themes and use cases is
that themes lack a direct description whereas use cases are
primarily textual. Also, there are no actors in theme models.

With respect to our initial observations, themes can be trans-
formed into use cases according to the following guidelines:2

1. Create a use case for each theme. Identify actors in
requirements.

2. Create an extend relationship for each crosscut rela-
tionship found in the crosscutting view preserving its
direction.

3. Consider splitting themes. Identify grouped themes
in individual theme views (both the existing ones and
those obtained in step 1). Consider transforming each
theme–subtheme relationship into an include relation-
ship or into a generalization relationship if the theme
and subtheme conceptually represent the same theme.
Deciding not to transform the subtheme means decid-
ing its functionality will be an integral part of the ex-
isting use case possibly as a separate flow.

4. Consider unifying themes. Identify unified themes in
the history of the operations performed upon the theme
model if it is available. Consider transforming unified
themes into generalizations.

5. Consider the granularity of the obtained use cases and
restructure them as necessary by including too low
level use cases as flows of regular ones.

6. If not resolved by previous steps, resolve the postponed
relationships as include, extend, generalization, gen-
eral relationship, or dismiss them.

3.1 The Initial Use Case Model
Figure 5 shows the use case model of our example applica-
tion obtained by applying the first two steps of the trans-
formation. Although it is not necessary to do so, names of

2An initial version of this process has been proposed in our
earlier work [7].

the use cases obtained by transformation can be adjusted.
In our example, the correspondence between the theme and
use case names is quite straightforward.

Remove Billed Item

Add Product

Change Product Quantity

Print Billed Item

Bill Item

Record Product Quantity

Approve
Modify Price

Remove Product

Identify Product
Storekeeper

«extend»
«extend»

«extend»

«extend»

Cashier

Manager

Figure 5: Identified use cases and extend relation-
ships.

We omit determining extension points since we do not have
the actual flows in use cases. However, there is a sufficient
understanding of each extend relationship to provide a Cock-
burn style [2, 9] descriptive reference to extension points in
extending use cases. For example, we could say that Print
Billed Item is activated each time an item is added to a bill
or removed from it.

Base themes (that do not appear as subthemes) in the initial
process correspond to peer use cases (use cases with no direct
relationships between them [4]), so no special effort is needed
in this direction.

3.2 Subthemes
There are no grouped themes (step 3 of the transformation)
in our example, but examining themes for splitting resulted
in three subthemes displayed in Fig. 6. We actually sepa-
rated (implicit) product identification in the context of each
of these three themes. For simplicity, we ignore the data
entities themes operate on. If present in the model, they
should be referred to in the use case flows.

We could create a separate use case for each subtheme, but a
closer look at them reveals they represent the same function-
ality named differently merely due to Theme/Doc not allow-
ing multiple themes with equal names. This means that the
subthemes we have just separated out have to be unified and
given a common name. A logical choice is identify-product,
which points us lexically to the equally named theme already
present in our model. We acknowledge these three themes
are one and only theme and recognize it corresponds to the
Identify Product use case, which has been already present
in the model. We also dropped the association of this use
case to the actor because we revealed it cannot be activated
separately (Fig. 7).

identify-product-change-quantity

R2

change-quantity

R4

add-product

R3

identify-product-remove product

identify-product-add-product

remove-product

Figure 6: Splitting the themes.

Add Product

Change Product Quantity

Remove Product

Storekeeper

Identify Product

 «include»

«include»

 «include»

Figure 7: Inclusion.

3.3 Unified Themes
There are no unified themes in our model (step 4 of the
transformation), but there is one opportunity for unifying
themes. Both bill and remove-item themes are about billing
an item: both of them add a record to the bill, and both
of them add a value to the total sum of the bill, though a
negative one in the remove-item theme. We separated the
common behavior into an abstract use case named Bill Item
and derived two concrete use cases from it that correspond
to the two kinds of billing operations as shown in Fig. 8.

Remove Billed Item

Print Billed Item
Bill Item

Approve

«extend»

 «extend»

Cashier Add Billed Item

Manager

Figure 8: Generalization of use cases.

3.4 Granularity
Themes tend to be lower level than use cases, so it is advis-
able to check whether all the use cases obtained so far are at
an appropriate level (step 5 of the transformation). Taking
the Bill Item use case as an example, we may note that it
would be more natural to have billing a whole purchase as a
use case. Here we have two possibilities: to replace all three

billing use cases with one, integral use case called Bill Pur-
chase or to introduce the Bill Purchase use case and keep
the existing use cases as inclusion-only use cases.

Formerly separate use cases may persist as basic flows in the
integral use case. This is not an uncommon practice in use
case modeling often applied to develop so-called CRUD use
cases that describe typical create-read-update-delete opera-
tions by a separate base flow [10]. Both solutions are correct
and may be viewed as a matter of style.

4. THE REVERSE TRANSFORMATION
Since a use case model corresponds to the combination of
the crosscutting and individual theme views, its transfor-
mation into a theme model will result in these two views.
Subsequently, the theme–relationship view will be derived
from them. The transformation steps are as follows:

1. Identify themes by transforming each use case not in-
volved in a generalization into a theme and transform-
ing each generalization among use cases into unified
themes. Optionally rename themes by shortening the
corresponding use case names. Drop actors.

2. Create the crosscutting view by transforming each ex-
tend relationship between use cases into a crosscutting
relationship between the corresponding themes pre-
serving its direction.

3. Create the individual view by transforming each in-
clude relationship between use cases into a theme–
subtheme relationship preserving its direction. De-
rive the data entities the theme operates on from the
use case flows and attach them to the corresponding
themes.

4. Transform all requirements use cases refer to into re-
quirements in the theme model. Transform each use
case to requirement relationship into a relationship be-
tween the corresponding theme and requirement.

5. Derive the theme–relationship view by including all
the themes in the crosscutting view and identifying
shared requirements. Transform each unspecified de-
pendency between use cases into a postponed relation-
ship between the corresponding themes preserving its
direction.

4.1 Generalizations
The transformation of generalizations among use cases relies
on the inversion of the two schemes applied in the themes to
use cases transformation (see Sect. 3.3). In one, the common
behavior among two or more themes is separated into an
abstract use case with derived use cases corresponding to
themes, while in the other one use cases are derived one
from another corresponding to the generality of themes.

4.2 Extend and Include Relationships
Theme/Doc is capable of representing chained extend re-
lationships with the chained theme crosscutting. However,
chained extend relationships are rare in use case models.

Table 1: Equivalence of Theme/Doc and use case
modeling mechanisms.

Theme/Doc Use Case Modeling
base theme peer use case
requirement brief description/flow
crosscutting theme extending use case
grouping theme including use case
grouped theme included use case
unifying theme general use case
unified theme special use case
subtheme inclusion use case
crosscutting relationship extend relationship
theme–subtheme relationship include relationship
theme–requirement relationship use case to requirement

link
postponed relationships any/no relationship
n/a actor

On the other hand, chained include relationships represent
a problem since Theme/Doc supports only one level of sub-
themes. Although chained include relationships indicate
functional decomposition, which should be corrected directly
in the use case model, there are two ways to deal with them
during a transformation: to keep the subtheme connected
to the theme and have it include all other subthemes or to
keep the leaf subthems and have them include all other sub-
themes.

4.3 Requirements
The themes derived from use cases have no description and
as such are hardly understandable to the parties not in-
volved in the transformation. There are several possibilities
to derive theme descriptions during the transformation of
use cases into themes.

Deriving Theme/Doc style requirements from use cases and
requirements attached to them would obviously require a lot
of effort. If use cases are linked to respective requirements,
the initial set of requirements can be obtained by attaching
these requirements to themes.

However, it is questionable whether the requirements in the
Theme/Doc style are needed at the stage at which there
is a Theme/Doc model with completely separated crosscut-
ting. A regularly developed theme model at this stage en-
compasses highly restructured requirements that reflect this
separated crosscutting and it may be very hard to arrive at
desirable formulations of requirements.

Describing each theme according to the understanding of its
meaning still requires some effort, but not as big as in mim-
icking the exact Theme/Doc requirement style. Attaching
use cases or just their brief description instead of require-
ments to the corresponding themes may be considered as
the quickest yet viable solution.

5. DISCUSSION AND COMPARISON
Table 1 summarizes equivalence of Theme/Doc and use case
modeling mechanisms. A use case model as such corresponds
to the combination of the crosscutting and individual theme
view.

Main similarities between themes and use cases include the
way they express aspect-oriented decomposition, their re-
lationship to functional decomposition, and generalization.
With respect to aspect-oriented decomposition, it is remark-
able how both themes and use cases accommodate both
asymmetric and symmetric aspect-oriented decomposition
with equivalent mechanisms (base themes/peer use cases
and crosscutting relationship/extend relationship).

One of the main differences between themes and use cases is
in the way they are described. While themes are described
indirectly by restructured requirements, use cases are de-
scribed by flows of events. Further differences include nam-
ing convention, lack of actors in themes, and lower level char-
acter of some themes. While non-functional requirements
can be captured by so-called infrastructure use cases [4],
the Theme/Doc approach does not seem to deal explicitly
with them, which means they have to be postponed to de-
sign.

Theme/Doc might be closer to natural language specifica-
tion, while use cases tend to enforce some design/implemen-
tation mechanisms such as generalization (object-oriented)
or extension (aspect-oriented). Although these mechanisms
receive quite a lot of attention, use cases are primarily tex-
tual and can be succesfully expressed without employing
them [2].

Theme/Doc may seem attractive as it promises automated
theme model generation from requirements [1]. However,
tool support for Theme does not seem to be available at
all,3 and even if was, generated models that were reported
were huge and required a lot of manual work [1] heavily
compromising the potential benefit from the automatic gen-
eration.

6. RELATED WORK
Baniassad and Clarke introduced use cases as one of the
sources of themes and gave a hint that each use case or action
(perhaps a use case step or flow) can become a theme [1].
Apart from this, we encountered no attempt to bring use
cases to a direct connection with themes, nor to formulate
the transformation between them.

Themes are declared to be close to features in the sense of
feature modeling (having its roots in FODA [5]) or even re-
ferred to as features [1]. Griss et al. [3] view features as
more general than use cases as they represent not only the
user visible behavior as use cases tend to, but also system
internal structure and realization (observed also by Banias-
sad and Clarke). Lopez-Herrejon and Batory see a theme as
a collection of structures that represent a feature [6]. The
connection of use cases to features and features to themes
transitively confirms relatedness of use cases to themes.

7. CONCLUSIONS AND FURTHER WORK
The transformation process of the Theme/Doc model into
the use case model and vice versa presented in this paper
confirmed that themes are very close to use cases, which has
been anticipated by an initial comparison of these two no-
tions as well as by other literature, but haven’t been studied

3see http://www.thethemeapproach.com/downloads.html

deeper so far.

While Theme/Doc may still be interesting for being poten-
tially less design dependent, lack of tool support and general
acceptance of use case modeling in analysis pushes the choice
between the two significantly towards use cases.

As a further work, we consider extending the transformation
towards Theme/UML to explore the relationship of themes
in Theme/UML to use case slices [4]. The excess informa-
tion in use cases could provide a part of the information
needed for modeling Theme/UML themes, while they can
provide flows to use cases. It would also be interesting to ex-
plore to what extent features (in feature modeling) cover the
properties of themes in which they differ from use cases. A
connection of themes to features in feature modeling would
be also interesting to explore.

8. ACKNOWLEDGMENTS
The work was supported by the Scientific Grant Agency of
Slovak Republic (VEGA) grant No. VG 1/0508/09.

I would like to thank Ruzanna Chitchyan and Steffen Zschaler
for their valuable suggestions.

9. REFERENCES
[1] S. Clarke and E. Baniassad. Aspect-Oriented Analysis

and Design: The Theme Approach. Addison-Wesley,
2005.

[2] A. Cockburn. Writing Effective Use Cases.
Addison-Wesley, 2000.

[3] M. L. Griss, J. Favaro, and M. d’Alessandro.
Integrating feature modeling with the RSEB. In
P. Devanbu and J. Poulin, editors, Proc. of 5th
International Conference on Software Reuse, pages
76–85, Victoria, B.C., Canada, 1998. IEEE Computer
Society Press.

[4] I. Jacobson and P.-W. Ng. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley, 2004.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(FODA): A feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, USA, Nov.
1990.

[6] R. E. Lopez-Herrejon and D. Batory. Modeling
features in aspect-based product lines with use case
slices: An exploratory case study. In Proc. Models in
Software Engineering: Workshops and Symposia at
MoDELS 2006, Genoa, Italy, Oct. 2006.

[7] P. Michalco. Transforming aspect-oriented analysis in
Theme/Doc into use cases. In Proc. of Informatics
and Information Technologies Student Research
Conference, IIT.SRC 2009, Bratislava, Slovakia, Apr.
2009. http://fiit.stuba.sk/~vranic/proj/dp/
Michalco/dp.pdf.

[8] P. Sánchez, L. Fuentes, A. Jackson, and S. Clarke.
Aspects at the right time. Transactions on
Aspect-Oriented Software Development, IV:54–113,
2007.

[9] L’. Zelinka and V. Vranić. A configurable UML based
use case modeling metamodel. In M. Weske and

P. Liggsmeyer, editors, Proc. of 1st IEEE Eastern
European Regional Conference on the Engineering of
Computer Based Systems, ECBS-EERC 2009, pages
122–137, Novi Sad, Serbia, Sept. 2009. IEEE
Computer Society.

[10] G. Övergaard and K. Palmkvist. Use Cases: Patterns
and Blueprints. Addison-Wesley, 2004.

