
Towards a Domain-Oriented Approach for
Identifying Aspects in Software Requirements

Ehab Abdel Nasser
Department of Information Science

Arab Academy of Science & Technology

Cairo, Egypt

ehabx2007@gmail.com

Haitham S. Hamza
Department of Information Technology

Cairo University
Giza, Egypt, 12613

hshamza@acm.org

ABSTRACT
A major challenge in Aspect-Oriented Software Development
(AOSD) is the discovery and modeling of aspects in the early
phases of requirements and analysis. The quality of the
discovered early aspects using most existing techniques is as
good as the input provided to these techniques. As such, it is
difficult to conclude that one approach or another can effectively
identify aspects in a given set of requirements. In this paper, a
new approach for discovering early aspects in requirements is
proposed. The proposed approach complements existing ones by
providing a mechanism to iteratively understand and analyze the
problem domain in order to discover relevant and meaningful
candidate aspects. The proposed approach is presented and
demonstrated through a case study. Results obtained from the
proposed approach are compared to those obtained from the well-
known Theme/Doc approach. A tool that supports the proposed
approach is implemented and outlined as well.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Methodologies – Tools.

General Terms
Design

Keywords
Requirements Engineering, Aspect Oriented Requirements
Engineering, Software Stability Model, Formal Concept Analysis

1. INTRODUCTION
One of the potential features of a modern software system is to
have the ability to cope with the rapidly changing needs of the
software domain due to the volatile operational environment
where business rules may change, and new extensions may be
needed to be added [11, 12]. Accordingly, the software
engineering community strives to develop innovative techniques
to construct software systems that are maintainable and
evolvable, yet simple and resilient. Unfortunately, these
properties are not naturally inherited in software systems, and
thus, their realization requires careful attention throughout all the
phases of software development life-cycle.
Separation of concerns (SOC) is a generic concept that can be
used to reduce software complexity by identifying and
encapsulating different system properties into separate modules
such that each module can be viewed as a coherent unit.

Aspect-Oriented Software Development (AOSD) applies the
notion of SoC to effectively deal with crosscutting concerns that
may induce high complexity when implementing software
systems. Concerns of cross-cutting nature may inhibit system
evolution if they are not discovered in early development stages
[3, 7, 13]. AOSD defines the notion of aspects to deal with
crosscutting concerns. An aspect is a system behavior/concern
that can be functional or non-functional but it has a cross-cutting
nature such that it interferes with many parts of the software
causing high interdependency and tangled representation
between logically non-cohesive system components.
Current approaches for discovering early aspects in software
requirements depend mainly in the input provided by the analyst
without providing specific guidelines on how the inputs to these
techniques can be identified from the software requirements and
domain. We believe that system concerns must be systematically
identified by deeply analyzing the software domain and its
requirements. Accordingly, in this paper, we propose a new
domain-oriented approach for discovering early aspects in
software requirements. The proposed approach provides a
systematic mechanism to iteratively understand and analyze the
software domain in order to discover relevant and meaningful
candidate aspects. The proposed approach is demonstrated by
the means of a case study. The resultant list of identified aspects
is compared to that obtained by the applying the Theme/Doc
approach. A tool that supports the use of the proposed approach
is demonstrated as well.

2. BACKGROUND AND RELATED WORK
2.1 Aspect Oriented Requirement
Engineering (AORE)
Aspect oriented RE was firstly introduced by Grundy motivated
by the need for a new perspective that can handle the interactions
and relations between components during Component-based
system development [3].

Rashid et al. [1] showed hat aspects can be vital in early stages
during any system development, not just component-based
systems. They suggested the first model of “Early Aspects” to
separate concerns that crosscut several functional and non-
functional requirements in the system at the requirement level.

In Ref. [4], the Reusable Aspect Models (RAM) approach is
proposed as a multi-view based modeling approach, where aspect
oriented techniques are found to be a potential solution for
scalability and consistency challenges as they already

successfully help to identify cross cutting concerns and provide
means of their composition and interaction.

In Ref. [5], an approach for identifying and categorizing concerns
using tagging is proposed. Tagging is a flexible technique that is
widely used for categorizing any content including text, videos,
and image. In this work, tagging was used to guide the business
analysis process to find the similarities between discovered
concerns by associating them with tags. A tag can be associated
to more than one concern and vice versa. In Ref. [6], a new
architecture description language (ADL) is proposed to support
building aspect oriented systems for multi-agent systems (MAS).

Theme/Doc [7] is a requirement analysis approach that uses
Theme modeling as a way of representing system features. The
Theme model has two types of themes to describe two types of
features: base themes and cross-cutting themes. Base themes are
those who express certain functionality that do not repeat at
different places in the system but they share some behavior with
other themes. Cross-cutting themes are those which overlap with
many base themes.

The Theme/Doc approach uses a semi-automated process in
which developers supply a list of keywords which are the
possible system concerns, then a lexical operation is used to
identify which requirement statement can be considered as
aspectual, pointing to cross-cutting concerns and shows which of
the input keywords can be considered as candidate aspects. A
graph is generated showing the system concerns, and their
interactions and communications linked by requirements
statements.

 The pure lexical operation may lead to a number of false
negative concerns as the user is not a domain expert in the
system domain and he/she may miss important possible concerns.
Moreover, this approach may result in false positive concerns as
the system cannot understand that some terms in the input list
are synonyms to each other. To improve the performance of the
Theme/Doc approach, the Latent Semantic Analysis (LSA) is
proposed [8]. The approach enhances the Theme/Doc by finding
the relations between text blocks and generates the possible
system concerns without the user input list. Despite the
improvement brought by the LSA technique; however false
negative and false positive concerns were not reduced.

2.2 Formal Concept Analysis (FCA)
Formal Concept Analysis [9] is a mathematical framework that is
applied to different domains and it is used to understand the
relations between different data sets. FCA contains two main
elements: the Formal Context and the Formal Concept.

The formal context is a triple (G, M, I), where G is a set of
objects, M is a set of features, I is the binary relation between
them. The formal context is represented in a matrix in which
each row represents an object, while each column represents a
feature. When a certain object contains a certain feature, a mark
“X” is inserted in the intersecting cell. Table 1 shows a sample
formal context with three objects and four features.

Let O is a subset from the objects set G; β (O) is the set of
features that are common in all the objects in O. Let F is a subset
from the features set M; α (F) is the set of objects where each

object contains F. So, formal concept in (G, M, I) is (O, F) such
that β (O) = F and α (F) = O.

Table 1. Sample formal context used in FCA

 F1 F2 F3 F4
Obj1 X
Obj2 X X
Obj3 X X

2.3 Software Stability Model (SSM)
Software Stability model [10, 11, 12] is a generic modeling
approach to derive stable domain conceptual models that require
less effort to evolve in response to new and changing
requirements. By stable we mean, a model that does not require
unnecessarily effort or cost to adapt to new changes. In our
approach, the SSM approach is used to systematically analyze the
domain and identify its cross-cutting concerns.

SSM partitions the system into three layers [11, 12]:

• EBT (Enduring Business Themes): This is the most
abstract description. EBTs are the elements that
present the enduring aspects of the underlying
business.

• BO (Business Objects): the abstract classes modified to
be used in the system. BOs map the EBTs of the
system into more concrete objects.

• IO (Industrial Objects): more specialized and
customized classes.

Accordingly, the software core will be encapsulated within the
EBTs, then BOs. The system external modules which will be
subject to changes and modification will be within the IOs.

3. PROPOSED APPROACH
Unlike the Theme/Doc approach in which developers supply a
set of keywords as candidate concerns, our approach is based on
a more concentrate analysis for the software requirements and
domain. We believe that such an approach will lead to more
accurate view of the system concerns. Moreover, systematic
domain analysis used in the proposed approach can reduce the
variation in the quality of the resultant concerns. This is because
the quality of the candidate concerns does not rely on the quality
of the input provided by the developer as in the case of the
Theme/Doc approach.
Figure 1 shows the steps of the proposed approach for identifying
system concerns. Given the requirements of the system to be
designed, the proposed approach starts with a systematic domain
analysis using the concepts of SSM discussed in Section 2.3. The
objective of this step is to pinpoint candidate system aspects by
identifying EBTs, BOs, and IOs. In particular, an EBT along
with its related BOs represent a candidate system concern.
However, the SSM does not guarantee the identification of all
possible candidate concerns. This is because not all EBTs can be
identified by simply applying the guidelines of the SSM [11, 12].
To deal with this challenge, we capitalize on the fact that BOs
and IOs are usually easily identified; as these can be directly
extracted from the requirements of the system. In our approach,

we use BOs and IOs as means to explore more subtle system
concerns by identifying what we call the missing EBTs.
To identify missing EBTs, two steps are performed (See Figure
1): the FCA step and the concept interoperation step. In the FCA
step, the relationships among the BOs and IOs with respect to the
system requirements are explored. More formally, a formal
context is formed in which the BOs and IOs are the objects and
system requirements are the attributes. From the generated
lattice of this context, all BOs and IOs that share a set of
requirements and form a formal concept are considered as a
candidate system aspect. In the Concepts Interpretation step,
BOs and IOs are grouped to identify missing EBTs. Each group
represents a set of BOs and IOs that frequently co-exist among
the identified concepts in the FCA step. The co-existence of a set
of BOs and IOs indicates that they contribute together to
accomplish a certain system feature. With the help of the
software requirements, we can deduce this system feature, which
is the missing EBT.

Figure 1. Proposed approach for identifying system concerns
At this point, we have identified all possible EBTs in the system
either directly from the SSM model or from inspecting the BOs
and IOs using FCA and concept interpretation as discussed
above. To this end, each identified EBT represents a system
concern, expressed by its related requirements statements. The
shared requirements between system concerns will show how
these concerns affect each other, and which concern is cross-
cutting other concerns in the system.
At this stage, we can generate a Theme/Doc view for the
resultant concerns similar to the one generated by the
Theme/Doc approach. This step will be illustrated in the case
study presented in Section 4.
In order to simplify the implementation of the proposed
approach, we developed a tool to semi-automate some of the
steps in the approach. In particular, a tool is implemented to
perform the steps related to the FCA and concept interpretation.
The tool consists of two components: the Concept Explorer and
the Object Explorer. The Concept Explorer is a ready-made
JAVA-based tool that computes the formal concepts in a given
concept and outputs its lattice in XML format. This XML file is

input to the Object Explorer that we implemented from scratch to
classify BOs and IOs into groups according to the degree of
semantic similarities between these objects. In particular, this
process attempts to find how frequent an IO is found in the same
concept with a particular BO. For example, IO1 is found with
BO1 in 4 concepts, thus these objects have some degree of
similarity and gathered in a group “1”. System IO “IO2” is found
3 times with BO1 and 2 times with system BO2, then IO2 is
added to group “1” as well, and so on. If an IO is found to have
similarity with more than one BO, all such BOs will be added to
the same group. The groups generated in this step can help the
developer to focus on objects which have semantic similarity and
deduce whether they belong to an already exist system concern,
or they are pointing to a missing system concern (EBT).

Figure 2. Snapshot of the Object Explorer tool

4. CASE STUDY: THE PET SHOP
To demonstrate the concepts of the proposed approach, we use it
to identify the concerns and aspects in the Pet Shop case study
[2]. The Pet Shop system represents the typical requirements of
a simple online pet shop. All requirements can be found in [2].
The online pet shop consists of a frontend component (a website
for customers to shop and place orders) and a backend
component (to process placed orders). The backend component
consists of an order fulfillment component to handle orders and
ships ordered items, and a supplier component to manage the
shop suppliers.

In the following, we present the key steps in applying the
proposed approach to the Pet Shop problem statement.

Step 1: Domain Analysis: By applying SSM, we can deduce
domain objects and categorize them as follows:

• EBTs: When determining the core EBTs of a system, we
have to focus on the services being delivered by the system;
we have to be biased towards the customer’s point of view.
The identified EBTs are: Order Fulfillment,
Shipment, Purchasing, and System
Administration.

• BOs: They are the instantiations of EBTs, externally stable
but not internally in case of system evolution. The identified
system BOs: Order, View, Product, Customer,
Transaction, Stock, Async Messaging.

System Concerns

EBT
s

FCA

Missing EBTs

BOs-IOs

Concepts Interpretation

Software Requirements

SSM

EBTs, BOs, IOs

• IOs: They are explicitly mentioned in the requirements, can
be replaced with other alternatives without affecting the
system processes, and not adaptable to system evolution.
The identified IOs: Carte, User Account,
Navigation Bar, Search Mechanism, Sign-
In Module, Customer Module, Master View,
Details View, Shop Carte View, Checkout
View, Receipt View, Financial Record,
Shopping History Record.

A concern in this step will be defined by an EBT name
associated with related requirements. Table 2 shows the
identified system concerns (EBTs) from Step 1.

Table 2. Identified system concerns (EBTs) from Step 1.

System Concern Requirements

Order Fulfillment R2, R3, R4, R5, R6, R7, R9, R10,
R11, R26, R27

Shipment R5, R6, R7, R8, R14

Purchasing R3, R6, R13, R22, R26

System
Administration

R7, R12, R23, R26

Step2: Concept Identification (Using FCA) and Concepts
Interpretation. As previously mentioned in Section 3, the
system BOs and IOs will be used as input for FCA to explore
their similarities which can help to identify missing system
concern. First, FCA is used to identify concepts and then concept
interpretation step is used to identify missing EBTs.

Using the Concept Explorer tool a formal context is created using
BOs and IOs as objects and system requirements as
requirements. Formal concepts are identified and exported into
an XML file as discussed before. Using the Object Explorer tool,
the XML file is processed and all objects are grouped according
to their semantic similarities. Table 2 gives the output obtained
from the Object Explorer process.
• Group 1: the IOs are found with BO “View” more

frequently than with any other BO among the generated
concepts, that’s why they gathered in one group. The system
BO “View” has shared many system IOs in the same
functionality which is navigating the application products in
different view, like Master View, Details View,
Shop Carte View, Checkout View, Receipt
View, and also giving the user the capability of searching
among the shop products – Search Mechanism.

• Group 2: The system BO “Async Messaging” has shared
other system BOs and IOs – View, Customer, Order – to
accomplish a system feature of creating an order and
managing the purchasing process and synchronizing it
between the front and back ends to shows a feedback to the
application interface about the operation status.

It is worth noting that both system features found in group 1 and
2 focus on the client side – front end- of the system, which was

not explicitly explained in details in the requirements. According
to the noticed similarities, we can identify the missing system
EBTs shown in Table 3.

Step 3: Theme/Doc View. After identifying the system concerns
associated with the system requirements, now we can generate
Theme/Doc view, which helps us to find how concerns affect
each other, and which requirements are considered as an
aspectual requirement. Figure 3 shows the Theme/Doc view of
the proposed approach for the Pet Store case study.

Table 2. Object Explorer Output
 BO IO

Group 1 View Navigation Bar

Search Mechanism

Sign-In

Master_V

Details_V

Carte_V

Checkout_V

Receipt_V

Financial Record

Group 2 View Shopping History Record

Product

Order

Messaging

Customer

Transaction

Stock

Table 3. Missing EBTs identified using FCA

System Concern Requirements

System Navigability R15, R17, R18, R19, R20, R21, R22,
R24, R25

Interface Purchasing
Manager

R1, R2, R3, R7, R9, R10, R11, R26, R27

Figure 4 shows the output of the Theme/Doc approach for the Pet
Store case study. The main concern with the Theme/Doc
approach is that it relies on the developer suggested system
concerns as an input. This may lead to two main problems: the
false negative and the false positive concerns. These two
problems are evident from the output of the Theme/Doc approach
(See Figure 4). Regarding false negative concerns, we observe
that the Theme/Doc output is missing vital system concerns that
are not explicitly mentioned in the requirements, which are
responsible for showing how the communication between the
front end user interface interactions should be with the system
backend. Also there is no indication regarding the different views

that should be available to the user to browse the products. In
addition, the Theme/Doc output is missing another system
concern which is related to the administration functionality. The
final output also shows that “Filling Order” and “Place Order”
are two distinct concerns (See Figure 4), although these two are
very close and functionally overlapping and should be added to
one module. These problems are avoided in our results due to
the systematic iterative nature of the proposed approach.
It is worth noting that, enhancing the performance of the
Theme/Doc approach using the LSA approach [8] adds more
complexity to the approach. In LSA, every word in the
requirements is treated as a candidate system concern, and then
these concerns are filtered to identify the actual concerns. For
typical systems with large requirements, such an approach can be
very complex.

Figure 3. The Theme/Doc view of the proposed approach

Figure 4. The output of the Theme/Doc approach

5. CONCLUSION
 Representing aspects at early stages of development cycle
preserve the homogeneity between developments stages and
provide aspects traceability and promoting localization and
encapsulation. In this paper, we presented a new domain-
oriented approach for identifying candidate aspects in software
requirements. The proposed approach is based on systematically
identifying system concerns using software stability mode (SSM)
and formal concept analysis (FCA). Identified system concerns
are then explored using the Theme/Doc view in order to identify
cross-cutting concerns. The proposed approach is applied to the
Pet Store case study and the results are compared to those
obtained by the Theme/Doc approach. By deeply analyze the
domain of the problem, the proposed approach provided a more
comprehensive list of concerns that are difficult to identify using
conventional approaches. A tool that supports concern
identification and classification are also discussed and
demonstrated.

6. REFERENCES
[1] A. Rashid, P. Sawyer, A, Moreira, and J. Araújo, "Early Aspects: a

Model for Aspect-Oriented Requirements Engineering", Proc. of Int.
Conference on Requirements Engineering (RE'02), 2002.

[2] The Pet Shop Case study:
http://www106.ibm.com/developerworks/rational/library/1072.html

[3] J. Grundy, “Aspect-oriented Requirements Engineering for
Component-based Software Systems” Department of Computer
Science, University of Waikato 1999.

[4] J. Kienzle , W. Al Abed , J. Klein, ”Aspect-oriented multi-view
modeling”, Proceedings of the 8th ACM international conference on
Aspect-oriented software development, Charlottesville, Virginia, USA,
March 02-06, 2009,

[5] H. Ossher, D. Amid, A. Anaby-Tavor, R. Bellamy, M. Callery, M.
Desmond,J. D. Vries, A. Fisher, S. Krasikov, I. Simmonds, and C.
Swart, "Using Tagging to Identify and Organize Concerns during Pre-
Requirements Analysis", in Early Aspects at ICSE: Workshop on
Aspect-Oriented Requirements Engineering and Architecture Design.
held with ICSE 2009, 2009.

[6] C. Silva, J. Castr, M. Lucena, J. Araújo, A. Moreira, and F. Alencar,
"Support for Aspectual Modelling to Multiagent System Architecture",
in Early Aspects at ICSE: Workshop on Aspect-Oriented Requirements
Engineering and Architecture Design. held with ICSE 2009, 2009.

[7] E. Baniassad and S. Clarke, “Theme: An Approach for Aspect-
Oriented Analysis and Design" Department of Computer Science
Trinity College, Dublin 2, Ireland, 2004.

[8] L. K. Kit, C. K. Man, E. Baniassad, "Isolating and Relating Concerns
in Requirements using Latent Semantic Analysis" Department of
Computer Science and EngineeringThe Chinese University of Hong
Kong, 2006.

[9] R. Wille, “Concept lattices and conceptual knowledge systems”.
Computers and Mathematics with Applications 23 (1992)

[10] M. Cline and M. Girou "ENDURING BUSINESS THEMES"
COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5

[11] M. E. Fayad, D. S.Hamu, and D. Brugali, “Enterprise Frameworks
Characteristics, Criteria, and Challenges” Comm. of the ACM Vol. 43,
No. 10, 2000.

[12] Mohamed Fayad, ”Accomplishing software stability” Comm. of the
ACM, Vol. 45, No. 1, 2002.

[13] R. Chitchyan, M. Pinto, S. Shakil Khan,” Report on Early Aspects at
ICSE 2009: Workshop on Aspect-Oriented Requirements Engineering
and Architecture Design”, ACM SIGSOFT Software Eng. Notes 2009.

