
Multi-View Refinement of AO-Connectors
in Distributed Software Systems

Steven Op de beeck, Marko van Dooren, Bert Lagaisse, Wouter Joosen
IBBT-Distrinet, KU Leuven, 3001 Leuven, Belgium.

{steven.opdebeeck, marko.vandooren, bert.lagaisse, wouter.joosen}@cs.kuleuven.be

Abstract
This paper presents MView, a technique that enables the
separation of various developer stakeholder views on an
architectural connector in distributed software systems.

While state-of-the-art AO-ADLs focus on describing
compositions using aspect-based connectors, there is no sup-
port for describing a connector across multiple architectural
views. This is, however, essential for distributed systems,
where run-time and distribution characteristics are not rep-
resented in a single view. The result is connectors that suffer
from monolithic descriptions, where the views of different
stakeholders are tangled.

MView untangles these stakeholder views by defining
them in separate modules and specifying refinement rela-
tions between these modules. We have integrated MView in
a prototypical ADL, which allows code generation for mul-
tiple AO-middleware platforms.

We evaluate MView in terms of stakeholder effort in a
content distribution system for e-Media. We have created
an Eclipse-plugin that supports the ADL, and performs code
generation to the JBoss and Spring middleware platforms.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed Applications; C.2.11 [Software Engi-
neering]: Software Architectures

1. Introduction
Distributed software systems consist of complex composi-
tions of components and third-party subsystems. This com-
plexity is inherent to the growing need to take into account
the run-time and distribution characteristics of compositions,
as well as their crosscutting nature. This is a trend that
is gaining support from AO-Middleware platforms (AOM)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

Connectorl

Component3

Component1 Connectork Component2

Connectorm

Application

Environmentx Environmenty

C&C

DEPLOYMENT

MODULE

ar
ch

ite
ct

ur
al

 v
ie

w
po

in
tsc

c
c

c

a
a

a

d
d

d
d

KEY

stakeholder 
focus

r
stakeholder 
with role r

x y

artifacts

Figure 1. The development process in terms of stakeholder
roles and architectural viewpoints.

such as ReflexD, DyMAC, and AWED [21, 23, 36], which
offer direct support for such complex compositions.

In software architecture, a view captures the concerns of
a stakeholder on the basis of a viewpoint, while a viewpoint
defines the language for describing a specific facet of the sys-
tem [20]. Distributed software systems are described based
on the views of multiple developer stakeholders with varying
expertise and development roles: e.g. component developers,
application assemblers, and deployers. Their views are spec-
ified in accordance with at least the architectural viewpoints
of module, component-and-connector and deployment, re-
spectively [9]. Figure 1 outlines how stakeholder roles match
viewpoints in the development process.

To describe components and their compositions, several
Architectural Description Languages [6, 14, 17] (ADL) have
been proposed. More recently, various AO-ADLs [15, 16,
24, 26, 28, 31–34] have been defined that capture the cross-
cutting compositions of software systems in AO-connectors.

The goal of these AO-ADLs differs from ours: they aim to
separate the crosscutting concerns of stakeholders with role c
(see Figure 1) by means of AO-connectors k, l, andm. How-
ever, they do not separate the various views of stakeholders
c, a, and d, involved in such an AO-connector throughout the
development process. Here, c, a, and d stand for component
developer, assembler, and deployer.

251



31 2
KEY

prov./req. connector

component
instanceName

abstract-
hostName

1,2,3 tiers

AO connector

ClientTerminal

Client

User-
Credentials

ServicesServer

Personalization
-Service

UserTracking-
Service

ContentManagement-
Server

Content-
Management-

System

UserManagement-
Server

User-
Management-

System

AuthenticationServer

Authentication-
Service

AccountingServer

Accounting-
Service

PublishingServer

Newspaper-
Service

Security-
Context

NewsDeskServer

Security-
Context

NewsDesk

Figure 2. A component-and-connector view on the publishing architecture.

Consider for example the composition of the accounting
and news delivery services in a content distribution system
for e-Media. Informally, the composition is described as
follows:

“Call the chargeForService method, whenever these con-
ditions hold: the execution of method fetchArticle of the
NewsRemote interface, and on the NewspaperService com-
ponent instance, and located on the PublishingServer host.”

This complex composition suffers from a monolithic de-
scription, where the views of different stakeholders are tan-
gled. We discern the following expert stakeholders: a com-
ponent developer (execution of a method of an interface),
an application assembler (of a component instance), a de-
ployer (located on a remote host). Since the views of these
stakeholders are not all available or even relevant at one time
during architecture, a single artifact should not capture this
entire composition. Furthermore, because of low-level de-
tails like host conditions, adapting the composition for use
in another deployment environment is error-prone.

We propose MView to achieve the desired modularity of
stakeholder views in the development process. MView is a
technique for multi-view refinement of connector descrip-
tions, that builds on inheritance and step-wise refinement. In
MView, a complex composition is modularized across mul-
tiple connectors, where each one deals with the composition
in the context of the view of a single stakeholder. For exam-
ple, a module view adds module related constraints: method
M on interface I . MView enables one connector view to re-
fine another connector view. So, as the architecture is further
developed, a connector can be refined by an additional view,
for example by a deployment view that adds deployment re-
lated constraints: must be running on host R. As a result,
the complex composition is specified through a process of
multi-view refinement of connectors. Each connector view
is constructed separately, by the right stakeholder for the job,
at the appropriate time during development.

We have integrated MView in a prototypical ADL, called
MViewADL, that we support with an Eclipse plugin [2].
This plugin supports code generation to multiple distributed
middleware platforms, JBoss [1] and Spring [3].

We have applied MView in a case study on e-Media [38]
where we compare its stakeholder effort with other tech-
niques. The case study has a detailed architecture that is
based on industry requirements and it serves as the running
example throughout this paper.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the e-Media case study, followed by an il-
lustration of the problem. In Section 3, we analyze the re-
quirements for MView refinement in ADLs and we discuss
the support in existing approaches. Section 4 introduces and
illustrates the MViewADL, followed by a detailed explana-
tion of MView refinement. Section 5 discusses automatic
code generation to JBoss. Section 6 evaluates MView in
terms of stakeholder effort, and revisits the requirements for
MView. Section 7 presents the related work, and Section 8
concludes.

2. Case Study and Problem Illustration
In this section, we define the case study that we use through-
out the paper, followed by a detailed problem illustration.

The subject of our case study is a content distribution
system for e-Media. A digital newspaper offers news in
different media formats and sizes, to be delivered through
different communication channels. It supports various ad-
ditional services, like flexible accounting, tracking user-
interest and content personalization. A consumer can browse
recent headlines and read article summaries for free. How-
ever, to have access to the full content and additional ser-
vices, a consumer is required to sign up. The system charges
a signed-up consumer for paid services by means of micro-
payments. User-tracking, personalization, authorization and
accounting are examples of services that are integrated using
complex composition.

252



This case study was developed throughout a number of
research projects in the e-Media space, in close collabora-
tion with actual industrial news publishers. The architecture
and implementation were performed for an AOSD Industry
Demonstrator [38].

Figure 2 shows a component-and-connector view of a rel-
evant subset of the publishing software architecture, con-
sisting of component instances, their compositions and ab-
stract host allocation. The architecture is deployed along
three tiers: (1) Client, (2) Business and (3) Storage.

The Business tier consists of a number of subsystems: the
Newspaper, NewsDesk and Auxiliary services. The NEWSPA-
PERSERVICE component is externally accessible by the CLIENT.
It supplies the services to browse and read articles.

Authentication and Authorization are supplied by the
AUTHENTICATIONSERVICE, USERCREDENTIALS and SECURITYCON-
TEXT components. The additional services USERTRACKINGSER-
VICE and PERSONALIZATIONSERVICE can be activated on a per-
user basis. User tracking keeps track of the reading behavior
of the consumer, while personalization uses this to personal-
ize the view of the consumer on the news.

The ACCOUNTINGSERVICE component is responsible for do-
ing the accounting of Service Usage behavior of the con-
sumer. The methods that belong to this Service Usage cate-
gory are fetchArticle, listNewestArticles, listArticlesForTag,
and listArticlesForCategory —a part of the main interface of
the NEWSPAPERSERVICE. The complex composition between
the NEWSPAPERSERVICE and ACCOUNTINGSERVICE components
is modeled, in our component-and-connector view, by means
of a full line arrow. The accounting composition is tangled
by the following stakeholder views: Accounting must only
interact with (a) the specific service usage methods of (b) the
NEWSREMOTE interface, implemented by any component in-
stance that is (c) deployed on the PUBLISHINGSERVER abstract
host.

Problem Illustration. We illustrate the problem of tan-
gling further with an example in an existing ADL: Fractal-
ADL [32]. Figure 3 shows a complex composition descrip-
tion that realizes Accounting.

The example shows two component declarations, AC-
COUNTINGSERVICE and NEWSPAPERSERVICE with their provided
interfaces (role=“server”). The part of the composition we
are interested in, is the weave XML element (line 12–18).
The root attribute indicates the application scope of the as-
pect, and the acName attribute indicates the component that
supplies the additional behavior (advice). The pointcutExp
attribute contains the conditions for composition, and must
conform to the following template:

“(client | server | both) component; interface; method:type”

Client and Server indicate an expected outgoing or in-
coming call respectively, followed by a component name,
interface name, and method name, and return type.

1 <definition name="NewspaperApp">
2 <component name="AccountingService">
3 <interface name="AccountingRemote" role="server"
4 signature="org.objectweb.....AspectComponent"/>
5 </component>
6 <component> name="NewspaperService">
7 <interface name="NewsRemote" role="server"
8 signature="Service"/>
9 </component>

10 <binding client="NewspaperService.NewsRemote"
11 server="AccountingService.AccountingRemote"/>
12 <weave root="this" acName="AccountingService"
13 aDomain="ServiceAccounting"
14 pointcutExp="
15 <!-- PublishingServer; (unsupported informal description) -->
16 SERVER *;
17 NewsRemote;
18 fetchArticle(ContentItemId):ContentItem" />
19 </definition>

Figure 3. The complex SERVICEACCOUNTING weave com-
bines contribution from three stakeholders into a single de-
scription.

This pointcutExp representation is tangled with the views
of multiple stakeholders, as indicated by the different gray
areas. The first one from the bottom (line 17–18) is a
module-viewpoint description that focusses on interfaces
and their methods. It describes a pointcut that matches calls
of the fetchArticle method, of the NEWSREMOTE interface.
This is the responsibility of a module developer familiar with
the newspaper service and the Accounting requirements. The
next view (line 16) further specifies the pointcut in terms
of the Component-and-connector viewpoint: only incoming
calls are allowed for any (indicated with *) component in-
stance. This is the job of an application assembler. Finally,
the called component is required to be allocated on the Pub-
lishingServer abstract host (line 15). This is the job of an ap-
plication deployer. This last condition, however, is not sup-
ported in Fractal-ADL. We had no choice other than to spec-
ify it informally in the architectural description.

This example shows how the views of different stakehold-
ers w.r.t. a single composition are tangled in a monolithic
connector description. Furthermore, it shows that the rigid
structure of this particular description is difficult to refine
across multiple connectors.

3. Requirements Analysis
In this section, we present four requirements for ADL fea-
tures that are necessary in order to support multi-view refine-
ment. We apply these requirements in a study of the related
work.

3.1 Requirements
It is our goal to enable the stakeholders, that are in-
volved with a composition, to specify their views on that
composition separately and at the appropriate time during
development—the right stakeholder at the right time. This
requires the monolithic connector to be split up into multi-
ple explicitly related connectors, that are no longer tangled
with respect to the concerns of the involved stakeholders.

253



We break this goal down into four requirements for ADL
features that we deem necessary. We use these requirements
in a study of the related work to determine for each approach
what is missing in order to achieve our goal. These require-
ments are, in part, based on the Classification and Compar-
ison Framework for ADLs by Medvidovic, et al. [22], but
applied in the context of distributed middleware systems.

1. Open Connector. First, the specification of a connector is
defined as the high-level model of its composition behavior.
In order to consistently refine this specification across the
levels of architectural abstraction (the architectural process),
the ADL must support connector specification and it must
be in a form that is open for customization. To contrast, a
black-box connector does not convey its meaning and cannot
be further refined. Second, it is required for the connector to
support composition that is sufficiently expressive to support
complex composition, as detailed in Section 2. This require-
ment is based on the Semantics and Evolution features of the
Classification Framework [22].

2. Multi-Platform Support. First, the ADL is highly inde-
pendent of the details of a specific run-time platform. It fa-
cilitates generic specifications in the face of heterogeneous
component models. This avoids postponing important deci-
sions until such a platform is chosen, e.g. the specification
of complex compositions. Additionally, it avoids the risk of
architects building architectures for one specific platform or
make the wrong trade-offs because of it. Second, in the face
of this heterogeneity, it is desirable for an ADL to come with
the tools required to assist in the generation of implementa-
tion code, preferably to multiple platforms, that is consistent
with the software architecture [22].

3. Multiple Views and Viewpoints. The description of the
architecture occurs in terms of multiple views and view-
points. Each view describes the architecture from the per-
spective of a particular stakeholder concern (or a set thereof).
Each view is constructed according to an architectural view-
point that matches the expertise of the stakeholder. Support
for this requirement means a clear multi-view description
across a set of architectural viewpoints. For distributed sys-
tems such a set would have to include at least the viewpoints
of module, component-and-connector and deployment [9].
Examples of views can be seen in Figure 2, which shows
a graphical representation of a component-and-connector
view, but also the composition in Figure 3 is considered a
view. We build on the Multiple Views feature in [22].

4. View and Viewpoint Relations. First, the views in an ar-
chitectural description of a system are always related but of-
ten only implicitly, in part because they describe different
perspectives of the same system. But some views are related
more closely and elicit explication. An example is the unifi-
cation of identical elements in different views. Explicit de-
scriptions of relations between views has many uses [12],
some of which are essential to our goal, such as composition

and model transformation. Second, this requirement encom-
passes support for explicit relations between views of differ-
ent viewpoints.

3.2 Existing Approaches
Table 1 shows the features that are supported by various
approaches in the related work. For each requirement we
discuss the most important observations.

1. Open Connector

2. Multi-Platform Support

3. Multiple View(point)s

4. View(point) Relations

[33] DAOP-ADL (a) ◦
[34] AO-ADL (b) ◦ •

[32] Fractal-ADL (c) ◦ ◦
[24] AspectLEDA (d) ◦ ◦ ◦

[15] AspectualACME (e) ◦ ◦
[27] π-ADLARL (f) ◦ ◦ ◦ ◦

[31] Prisma (g) ◦ •
[11] View Composition (h) ◦ • ◦

[19] Multi Perspective (i) • • ◦
[8] Stratified Frameworks (j) ◦ ◦ ◦

[25] Viewpoints Framework (k) ◦ • ◦

◦ – limited support • – support

Table 1. Feature matrix for requirements.

1. Open Connector. ADLs a–g support a connector that
is open for customization. However, the connector often
has semantics that are constrained to a specific composition
model that, for instance, does not support deployment con-
text (see problem illustration in Section 2). The approaches
h–k have connectors —which act as black boxes— with
pre-defined semantics, that do not allow customization. Ap-
proach j makes abstraction of the connector altogether.

2. Multi-Platform Support. ADLs b–g have not been cre-
ated for use in a single platform. Fractal, AspectLEDA and
π-ADL support generation to a single platform (FAC, and
twice Java, respectively). Only AO-ADL and Prisma sup-
port code generation to multiple platforms. DAOP-ADL was
specifically designed for the DAO-Platform. Approaches h–
k support more generic descriptions by design, when com-
pared to a typical ADL. Only the Multi Perspective approach
supports generation to multiple platforms.

3. Multiple Views and Viewpoints. π-ADLARL and
AspectLEDA support a structural and behavioral viewpoint.
Stratified frameworks supports only a structural viewpoint.
Approaches h, i and k, on the other hand, support an arbi-
trary number of views and viewpoints.

4. View and Viewpoint Relations. π-ADLARL supports
a refinement relation between intermediate architectural

254



views, however, limited to a single viewpoint (component-
and-connector). The ADL does not support refinement in
terms of hosts, for example. The generic view approaches
h–k support relations between views as well. Specific cross-
viewpoint relations are considered feasible but are not de-
tailed.

4. MView
MView is a technique for multi-view refinement of archi-
tectural connector descriptions. It facilitates the decomposi-
tion of a complex monolithic connector into connector de-
scriptions that are no longer tangled with stakeholder views.
To apply and validate MView, we have integrated it in the
MViewADL prototypical ADL.

First, we explain and illustrate the core concepts of
MViewADL, without going into the refinement details. Then
we provide a detailed explanation of refinement. We end
with an overview of the available tool support.

4.1 Introducing MViewADL
MViewADL is an ADL for component-based distributed
systems, that supports aspect-oriented composition. The run-
ning example of this section is a refinement scenario of the
compositions of both the Accounting and Authorization ser-
vices from the e-Media system.

1 component NewspaperService {
2 provide { NewsRemote, ManagementRemote }
3 require { UserProfileRemote, ContentBrowseRemote }
4 }
5
6 abstract connector ServiceUsageCn {
7 abstract ao-composition ServiceUsage {
8 pointcut {
9 kind: execution;

10 signature: ContentItem fetchArticle(ContentItemId),
11 List listNewestArticles(int),
12 List listArticlesForTag(Tag),
13 List listArticlesForCategory(Cat);
14 callee { interface: NewsRemote; }
15 }
16 }
17 }

Figure 4. The component, connector and AO-composition
declarations.

MViewADL has two kinds of module declarations: the
component and the connector. Both modules are shown in
an example in Figure 4. A component has a name and it con-
tains a provide and optional require element as its only mem-
bers. These describe the dependencies of the component in
terms of the interface declarations that it provides and re-
quires, respectively. The example shows the NEWSPAPERSER-
VICE component with its dependencies (line 1).

The connector describes the composition between com-
ponents. A connector has a name and the following mem-
bers: the optional require and provide elements, and zero or
more AO-composition (AOC) declarations. The AOC con-
sists of a single pointcut and a single advice member. Either

member is optional. Without both present, the AOC is ab-
stract. A connector that contains at least one abstract mem-
ber, is abstract itself. We show in the next section that refine-
ment is used to introduce missing or abstract members.

A pointcut has a kind member, which can be call or
execution, and a signature member. The signature is a
comma-separated list of method patterns, supporting nega-
tions and wildcards to define the set of join points for com-
position. A pointcut supports further constraining in terms
of the caller and callee join point context of the composi-
tion. The kind, signature, caller, and callee members of the
pointcut are related through conjunction.

The caller and callee element can constrain the pointcut
further in terms of the following join point context proper-
ties: the interface, the component, the host, the instance and
the application. Each property accepts a comma-separated
list of definitions from its respective type, and it supports
negation, like the signature does.

The advice has a type (before, around, or after) and a ser-
vice member that references a method that acts as the advice.
The specific method is resolved through the interfaces in the
require-member of the connector.

The connector in the example is SERVICEUSAGECN. It has
a single AOC member called SERVICEUSAGE. The AOC is ab-
stract because it is incompletely specified, as it contains only
a pointcut element (lines 8–15) and no advice. The pointcut
is of kind execution (line 9). This means that interception
needs to takes place at the callee side. The pointcut has a sig-
nature comprising the four Service Usage methods (lines 10–
13). The pointcut is further constrained in terms of the callee
context: the called component must provide the NEWSREMOTE

interface (line 14).

1 abstract application NewspaperApp {
2 host PublishingServer; host ContentManagementServer; host

ServicesServer;
3 ContentManagementSystem cms on ContentManagementServer;
4 NewspaperService ns on PublishingServer;
5 // other host and instance declarations cut
6 }

Figure 5. The application declaration.

Figure 5 shows a basic example of an application decla-
ration. An application consists of zero or more members of
each of the following declarations: the host, the module in-
stantiation, and the inline module. An application is abstract
if it contains a member that is abstract, it has no hosts, or it
has no instances.

A host declaration has a name, and, optionally, a mapping
to a real-world host (host NS is "news.com";). Host declara-
tions are used to represent host deployment topologies. A
module instantiation has a name, a type that refers to a com-
ponent or connector declaration, and a host on which the in-
stance must be allocated, prefixed with the on keyword. An
inline module declaration is a component or connector dec-
laration that is specified inline, as a part of the application
description.

255



The application declaration in the example is called NEWS-
PAPERAPP. It declares a number of abstract hosts: PUBLISH-
INGSERVER, SERVICESSERVER, etc. (line 2), and a number of
instances: cms and ns. ns is an instance of the NEWSPAPERSER-
VICE component that is allocated on the PUBLISHINGSERVER

host. This application does not specify any inline module
declarations. Subsection 4.2 on refinement contains more
elaborate examples of the application type.

4.2 Multi-view Refinement
In this subsection we provide a detailed explanation of multi-
view refinement (MView) of architectural descriptions.

A key feature of MView is explicit support for the step-
wise refinement [7] and redefinition of pointcuts in AO-
connectors. Pointcuts are refined based on context informa-
tion specific to the role of the stakeholder: e.g. the alloca-
tion of components on host, new components that provide
additional join points. Another MView feature is the refine-
ment of application deployment topologies. This enables the
definition of additional context for composition in terms of
instances, hosts, etc.

First, we introduce the general concept of MView refine-
ment and provide more context for the running example.
Then we explain the refinement of declarations, followed by
an explanation on how inherited elements can be redefined.

4.2.1 The MView Concept
In Section 3, we illustrated the problem of view tangling in
connector description by means of the Accounting composi-
tion in Fractal-ADL. Now, we introduce some more context
for the example from the requirements of the case study:

“Any consumer can view the headlines and summaries
for the newest articles, free of charge. However, only a
signed-up consumer can browse and access full-content ar-
ticles. Whenever a consumer makes use of paid services,
both Authorization and Accounting apply. Authorization reg-
ulates consumer access to these services, while Accounting
needs to keep track of consumers using these services.”

After analyzing this further, we conclude that the com-
positions of Authorization and Accounting intersect at the
same four methods: fetchArticle, listNewestArticles, listAr-
ticlesForTag, and listArticlesForCategory. We summarize
composition at these methods as Service Usage.

Figure 6 illustrates the untangled views and the possibil-
ity for hierarchical reuse between the Authorization and Ac-
counting compositions. The SERVICEUSAGECN connector (at
the top) captures the composition with the Service Usage
methods. Both the Authorization and Accounting composi-
tions share this view. The connectors for both compositions
reuse the SERVICEUSAGECN connector description by refining
it. The figure shows that the untangling of stakeholder views
in compositions is achieved by means of step-wise refine-
ment of connector descriptions. Each connector —possibly
a refinement of the previous— captures the concerns of a

<<connector>>
ServiceUsageCn

<<connector>>
Service-

AccountingCn

<<connector>>
Service-

SecurityCn

<<connector>>
Newspaper-

AccountingCn

<<connector>>
Newspaper-
SecurityCn

<<connector>>
Newspaper-
SecurityCnInt

C&C

DEPLOYMENT

MODULE

KEY
refines

stakeholder 
focus

ar
ch

ite
ct

ur
al

 v
ie

w
po

in
t

<<connector>>
Newspaper-

AccountingCnSE

Figure 6. Eliminating tangling using refinement.

particular stakeholder as a view on the composition. A stake-
holder expresses his view in terms of the knowledge associ-
ated with the architectural viewpoint that matches his exper-
tise.

Only the availability of context knowledge imposes con-
straints on the order in which the views can be defined. In
this paper we apply the scenario that is typical for the devel-
opment of distributed middleware applications. There, de-
velopment adheres to a structure that consists of three stages
and developer roles [5]: (a) development of components and
connectors by a module developer, (b) composition of com-
ponents into applications by an application assembler, and
(c) deployment of applications by a deployer. We start at
the module development stage. In this stage, the description
of compositions, in connectors, is limited to the knowledge
of the module viewpoint (components, interfaces, methods,
etc.). Then, in the application assembly stage, connectors
can be created, and existing connectors can be refined, in
terms of previous, and additional context (instances, host al-
location, etc.). Finally, the deployment stage makes hosts
explicit and allows connector refinement in this context.
MView supports alternative scenarios where one starts at
the application assembly stage with an abstract application
that is further refined as development progresses with com-
ponents, connectors, hosts and instances.

4.2.2 Refinement of Declarations
We start the running example at the top of Figure 6 and move
through it one refinement at a time. We limit the explanation
to the composition of Accounting, as Authorization employs
refinement in a similar manner.

The first connector, SERVICEUSAGECN, was explained in
our discussion on MViewADL in Section 4.1 (see Figure 4).

Figure 7 shows two examples of refinement: the SER-
VICEACCOUNTINGCN connector that refines SERVICEUSAGECN,

256



1 connector ServiceAccountingCn refines ServiceUsageCn {
2 require { AccountingRemote }
3
4 ao-composition ServiceUsage refines

ServiceUsageCn.ServiceUsage {
5 advice {
6 service: chargeForService();
7 type: after;
8 }
9 }

10 }

Figure 7. Refinement of a Connector and an AO-
composition with an advice member.

and the SERVICEUSAGE AO-composition that refines its parent
by the same name.

Multi-view refinement of declarations is similar to the
familiar technique of inheritance in object-orientation, but
it differs in the kinds of members that can be inherited, and
in the way these members can be redefined. For instance, by
default, pointcut members (elements without a name) will be
merged under refinement, instead of overridden.

If declaration A refines declaration B, A has a refines-
part that starts with the refines keyword (line 1), followed
by the name of declaration B. The refinements that A can
perform are: (1) redefine members inherited from B (merge
or override), (2) introduce members that are missing from
B, if B is abstract, or (3) add new members. In addition, A
inherits all members of B that are not redefined in the body
of A. In this relationship B is the parent and A the child.
Refinement is only supported between declarations of the
same declaration type, and it is not allowed to create loops
in the refinement graph.

In MViewADL, the declarations that are refinable are: the
AO-composition, the connector, and the application.

The AOC refinement in Figure 7 (line 4) results in SER-
VICEUSAGE inheriting all members of its parent by the same
name (line 7 in Figure 4), without redefinition. Additionally,
refinement adds an advice element to the AOC. The new ad-
vice element declares the chargeForService() method as ad-
vice of type after. chargeForService is a method from the
ACCOUNTINGREMOTE interface that plays the roll of advice for
this composition. The AOC does not further refine the inher-
ited pointcut element.

The SERVICEACCOUNTINGCN connector on line 1 refines the
SERVICEUSAGECN connector of Figure 4. The connector inher-
its the SERVICEUSAGE AOC from its parent. However, because
both the newly defined AOC and the inherited AOC share the
same name, the inherited one is overridden. It is also neces-
sary to supply the fully qualified name of the AOC that is
being refined, because the SERVICEUSAGE name now points to
the local one in this context (line 4). Additionally, the con-
nector defines the require element (line 2). This dependency
on the ACCOUNTINGREMOTE interface is required by the ad-
vice element in the SERVICEUSAGE AOC, as ACCOUNTINGRE-
MOTE provides the chargeForService() method.

The goal of this SERVICEACCOUNTINGCN connector is to
compose the Accounting service. It does this by reusing
a pointcut that was defined in a parent connector, SER-
VICEUSAGECN, and by then refining it with the accounting
advice specified here. Similarly, the SERVICESECURITYCN con-
nector (Figure 6) composes the Authorization service by re-
fining the same parent connector with advice that handles
authorization.

The connector and AOC descriptions in figures 4 and 7
are all done in the context of the Module viewpoint.

4.2.3 Redefinition of Members
The child in a refinement relation inherits all members from
its parent, except for the ones that it redefines. The semantics
of the redefinition depend on the kind of the member that is
redefined.

When a child inherits a member that is a declaration
and that already exists locally, redefinition always implies
override.

Overriding an inherited declaration happens when the
child in a refinement relation has a local declaration that
has the same name as the declaration that is inherited. As
a result, only the local declaration is accessible.

Because override is the only possible behavior between
declarations, emphasizing it by adding the override modi-
fier to a declaration means that override is the only desirable
outcome. In MViewADL, these declarations are: the compo-
nent, the connector, the AOC, the host, and the instantiation.

When a child inherits a member that is not a declaration
(member without a name) and that already exists locally,
redefinition defaults to the merge technique.

Merging elementsK andM is a structurally recursive op-
eration. First, it is verified whether the locally declared el-
ement has the override modifier, or if it is a declaration.
This turns the merge behavior into override, which result in
choosing the locally declared element over the inherited el-
ement. Second, if it is a merge, all members of K will be
merged, type by type, with members of element M , accord-
ing to the merge semantics of that type. This is repeated until
an element is reached that does not have a body, that is a dec-
laration, or that demands override semantics.

In MViewADL, the elements without a name, that sup-
port merge are the require, the provide, the pointcut, its sig-
nature, the caller and callee, and their context properties:
interface, component, host, instance and application, and fi-
nally, the advice. There are three elements that do not sup-
port merge, because they can hold only a single value: the
pointcut kind (Figure 4), and the advice type and service
(Figure 7).

We have previously discussed the refinement of the con-
nector and the AO-composition. Now we consider the refine-
ment of an application declaration (Figure 8). In the exam-
ple, the ACCOUNTEDNEWSPAPERAPP application refines NEWS-
PAPERAPP (Figure 5). The ACCOUNTEDNEWSPAPERAPP applica-

257



1 abstract application AccountedNewspaperApp refines NewspaperApp{
2 host AccountingServer;
3
4 AccountingService accServs on AccountingServer;
5 NewspaperAccountingCn accConn on PublishingServer;
6
7 connector NewspaperAccountingCn refines ServiceAccountingCn {
8 ao-composition ServiceUsage refines

ServiceAccountingCn.ServiceUsage {
9 merge pointcut {

10 merge callee {
11 override component: NewspaperService;
12 }
13 }
14 }
15 }

Figure 8. The NEWSACCOUNTING connector refining the SER-
VICEACCOUNTING connector with a component condition; in
the context of the ACCOUNTEDNEWSPAPERAPP.

tion inherits all of its members, and adds a host declaration
(line 2), a component and a connector instantiation (line 4–
5), and a connector declaration (line 7).

The NEWSPAPERACCOUNTINGCN connector, in this applica-
tion, refines the SERVICEACCOUNTINGCN connector from the
previous example (Figure 7). The connector adds one mem-
ber: the SERVICEUSAGE AOC. This AOC is a refinement as
well. It refines the pointcut that it inherits from its parent.
In this scenario, the composition is further constrained by
limiting interception to the those callee components that are
of type NEWSPAPERSERVICE. In other words, only those join
points remain where the callee is of component type NEWSPA-
PERSERVICE. Because the refining AOC shares the same name
as its parent, the parent is overridden instead of inherited.

We have explicitly added the superfluous merge modifier
to the pointcut and callee elements to illustrate the contrast
with the override component element. In this example, a
stakeholder has specified that all prior definitions of compo-
nent are to be ignored for the callee.

Next, the signature is merged with the signature of the
parent by concatenating their lists of members. This con-
forms to an implicit disjunction with super, if both elements
define a signature. Merging the caller (or callee) element
means merging each of the context properties of the same
type (interface, instance, etc.). Merging these is similar to
merging the signature element.

Finally, when merging a pointcut (line 9 in Figure 8), the
kind of the child overrides the kind of the parent, if both
elements define a kind. This is because the kind can only
hold a single definition (either execution or call). In addition,
at any point in this explanation, the override keyword may
force an override. Similarly, when merging the advice, the
type (and service) member of the child overrides that of the
parent, if both child and parent define it.

The application descriptions and connector refinements
are all done in the context of the Component-and-Connector
viewpoint.

Finally, the non-abstract application specification in Fig-
ure 9 refines the previous application specifications (line 1)

1 application NewspaperAppDeployment refines
AccountedNewspaperApp, SecuredNewspaperApp, ... {

2 host PublishingServer is "pub0.news.com";
3 host StagingServer is "stage.internal.news.com";
4 // other host declarations cut
5 NewspaperService stagingNS on StagingServer;
6 NewspaperAccountingCn accConn on PublishingServer;
7
8 connector NewspaperAccountingCn refines

AccountedNewspaperApp.NewspaperAccountingCn {
9 ao-composition ServiceUsage refines AccountedNewspaperApp.

...NewspaperAccountingCn.ServiceUsage {
10 pointcut { callee { host: ! StagingServer; } }
11 }
12 } // security connector refinement cut
13 }

Figure 9. The NEWSACCOUNTINGCN connector refining its
parent with a host condition; in the context of the NEWSPA-
PERAPPDEPLOYMENT.

in the context of the Deployment viewpoint. Every inherited
abstract host declaration is overridden with a host that de-
fines a physical system (lines 2–4). Connectors are refined
in terms of deployment concerns as well. In this case, the
deployer set up a staging environment where employees can
perfect layout and editing before publishing to the produc-
tion server. The STAGINGSERVER hosts a NEWSPAPERSERVICE in-
stance (line 5) that serves up the online newspaper for inter-
nal review. As the accounting service is not required for the
instance on this host, the NEWSPAPERACCOUNTINGCN connector
is refined to exclude the STAGINGSERVER host (line 10).

4.3 Tool-support and Implementation
We have implemented and validated MView in an Eclipse
plugin [2]. The reusable core of this plugin is a parser for
the MViewADL, which supports multi-view refinement. The
parser has been developed using ANTLR [29]. The lan-
guage meta-model is built on top of Chameleon [37] —an
in-house meta-framework for programming language con-
struction. We support automatic code generation for partic-
ular middleware systems, which is further detailed in Sec-
tion 5.

5. Code Generation for Middleware Systems
In this section we discuss automatic code generation for dis-
tributed middleware systems. We currently support gener-
ation to two of the more industry-ready application middle-
ware platforms, JBoss [1] and Spring [3]. Because JBoss and
Spring are related to some extend, we limit our discussion to
JBoss.

We continue the running example and discuss the result
of the automatic generation of the Accounting connector into
an implementation artifact for JBoss. Figure 10 shows the
result of this generation: a JBoss aspect class (line 3). The
aspect is called NEWSPAPERACCOUNTING. This name is taken
from the connector type that is instantiated in our refinement
scenario in the previous section (Figure 8, line 5).

The MViewADL language model supports resolving the
refinement relations between the different ao-composition

258



1 package accounting;
2 import accounting.AccountingRemote; // other imports cut
3 @Aspect public class NewspaperAccounting {
4 public static String[] VALID_HOSTS = {};
5 public static String[] INVALID_HOSTS = {"unit.."};
6 /* the pointcut definition */

7 @PointcutDef(

8 "execution(ContentItem *-> fetchArticle(Co..Id))" +

9 "OR execution(List *-> listNewestArticles(int))" +

10 "OR execution(List *-> listArticlesForTag(Tag))" +

11 "OR execution(List *-> listArticlesForCat..(Cat))" +

12 "AND class($instanceof(NewsRemote))" )
13 public static Pointcut newspaperAccounting;
14 /* required for advice */
15 @EJB private AccountingRemote accountingRemote;
16 /* advice method /*
17 @Bind(
18 pointcut="newspaperAccounting",
19 type=AdviceType.AFTER,
20 cflow="NpAccountingHostConditions")
21 public void chargeForService() {
22 accountingRemote.chargeForService();
23 }
24 }

Figure 10. A JBoss aspect class generated from the NEWS-
PAPERACCOUNTING connector.

descriptions of the NEWSPAPERACCOUNTING connector. This re-
sults in a complete specification for that particular composi-
tion. The generator uses this specification to output the JBoss
pointcut (line 13) and advice (line 21) in Figure 10.

The pointcut is configured by means of the PointcutDef

annotation (line 7). It is described in the JBoss pointcut
language, but we can clearly recognize the execution of the
four service usage methods on a component implementing
the NEWSREMOTE interface.

The advice body (line 21) denotes a call to a business
method on an instance of a component implementing the
ACCOUNTINGREMOTE interface. To retrieve such an instance,
JBoss uses dependency injection (line 15). The advice is
linked to its pointcut using the @Bind (line 17) annotation.
It references the name of the pointcut and includes the type
of advice: after.

The host-conditions on the composition with a callee
component are shown on lines 4 and 5. A callee component
conforms if it is deployed on a host in the valid list, but not
in the invalid list.

Additionally, Figure 10 shows the various concerns of
multiple stakeholders in this composition by means of the
gray areas. The three shades of gray retain the same mean-
ing as in the motivating example in Section 3 (the roles of
module developer, assembler, and deployer).

Verifying Host Conditions via Dynamic CFlow The gen-
eration to JBoss is seldom a one-to-one mapping from source
to target model. JBoss has some limitations that require spe-
cific techniques to solve. One of these is the verification of
host conditions.

JBoss does not support reasoning about host allocation in
the pointcut. Alternatively, we use a dynamic control flow,

or cflow, statement that determines at runtime whether the
advice should execute or not.

Whenever a pointcut specifies host-conditions, we gener-
ate a cflow class that verifies whether the callee is not allo-
cated on the testing host "UNIT.NEWS.COM", every time after
the pointcut matches, but before the advice is executed.

The cflow class in this example is called NPACCOUNT-
INGHOSTCONDITIONS, and it is coupled to the aspect by means
of the cflow-attribute of the Bind annotation (Figure 10,
line 17) of the advice.

6. Evaluation
In this section we evaluate how MView refinement affects
the development effort for the different stakeholders in com-
parison with other architectural techniques. We conclude by
revisiting the four requirements from Section 3.

6.1 Stakeholder Effort
We used the MViewADL to specify the architectural struc-
ture of the e-Media case study. The case has four architec-
tural concerns that are composed through AO techniques,
namely accounting, user tracking, personalization, and au-
thorization. This amounts to 11 connectors and a total of 24
refinements, distributed evenly across the four architectural
concerns.

In this evaluation we compare the effort, that is required
of stakeholders to define such views, between MView refine-
ment and two other, less systematic, techniques for architec-
tural description.

To estimate the effort, we use the Lines of Code met-
ric (LOC) in an absolute as well as a relative comparison.
The two other techniques we compare MView to are (a) the
import of unchanged descriptions and (b) manual specifica-
tion. We use the MViewADL syntax in each of these cases
to avoid representational differences from skewing the mea-
surements.

Technique (a), called Import, is that of the import of un-
changed specifications between two artifacts. Just like with
refinement, all elements within the parent are imported, un-
less they are overridden. However, Import does not support
connector refinement. Each connector that requires refine-
ment must be manually copied and locally adjusted. An ap-
proach that applies this technique is Fractal-ADL [32].

Technique (b), called Flatten, is that of manual copy
and local adjustment. Stakeholders put all their descriptions,
belonging to a single stage in the process (e.g. Module),
into a single artifact. Instead of refinement, stakeholders in a
later stage manually copy the specification before adding the
necessary changes. Approaches that apply this technique are
DAOP-ADL, AO-ADL, and AspectualACME [15, 33, 34].

For both techniques, we only count the lines of code after
adjustment is completed. Replaced or removed lines are dis-
regarded. The results of our evaluation are presented in Ta-
ble 2. The numbers in the row named Total represent the to-

259



MView % Import % Flatten %
Components 150 150 150

Interfaces 74 74 74
sum (x) 224 224 224
Module 90 21 123 21 105 17

Assembly 80 19 162 28 149 24
Deployment 38 9 75 13 156 25

sum (y) 208 49 360 62 410 66
Total (x+ y) 432 584 634

Table 2. Stakeholder effort in terms of codebase size (LOC)

tal size of the architectural description codebase for the three
techniques. From these LOCs numbers we conclude that the
total effort to construct the application is considerably less
with MView (432 vs. 584 and 634 LOC, respectively 26%
and 32% less LOC). This total consists of the sums of the
sizes of components and interfaces (sum x); and the sizes
of connector descriptions in Module, Assembly and Deploy-
ment (sum y).

The effort for the components and the interfaces is the
same in each approach (224 LOC) —their syntax is iden-
tical. Therefore, this reduction in effort can be completely
attributed to the connector descriptions in Module, Assem-
bly and Deployment (208 vs 360 and 410 LOC, respectively
42% and 49% less LOC to compose and deploy the appli-
cation). The relative effort of the connector descriptions, in
comparison with the total effort of a certain technique, also
decreases: MView requires 208 out of 432 LOC for this pro-
cess (or 49% of the total effort), while the other approaches
require 62% (Import) and 66% (Flatten).

We now focus on the effort for the assembler and de-
ployer. These are the stakeholders that are responsible for
the descriptions in Assembly and Deployment.

It is the job of a deployer to refine the descriptions with
physical host allocations and deployment-level connector
refinements. Their effort when applying each of the three
techniques, is considerably less with MView: 38 vs 75 and
156 LOC. The relative effort for MView is 9%, vs 13% and
25% for Import and Flatten respectively. Flatten requires
the most effort, as the deployers need to copy the entire
application assembly description, before carefully adding
changes. Import does a lot better, as the adjustments of
the deployers are limited to the host allocations and the
changes to the full copies of a small number of connector
descriptions. MView performs best, as refinement allows the
changes to connectors to be done in terms of the smaller
delta.

A similar conclusion applies to the application assembler
stakeholder in the assembly stage: 80 LOC for MView vs
149 LOC and 162 LOC for the other techniques. The relative
effort is respectively 19%, vs 28% and 24%, for Import and
Flatten respectively. A lot more connector refinements are
performed at this stage which explains the bad performance
of Import.

The composition effort in Module is 90 LOC for MView
vs 123 and 105 for the other techniques. The relative effort
for these tasks is 21% for MView, vs 21% and 17% for
Import and Flatten respectively. For MView, a relatively
big size of the descriptions is pushed to the connectors in
Module as the reusable bits are defined in these connectors
(see Figure 4), while the other stages can be described as a
delta. However, MView can still express this in lesser LOC
in comparison to the other techniques. This is because of
internal reuse in Module connectors.

In summary, MView does not only reduce the develop-
ment effort in absolute numbers, it also reduces the effort for
the assembler and the deployer relatively to the total specifi-
cation size. This is because more of the composition work-
load is pushed towards the stakeholders in the earlier devel-
opment stages, and can be easily reused.

6.2 Revisiting the Requirements
MViewADL builds strongly on each of the requirements
from Section 3 to reach our goal of allowing different stake-
holders to separately specify their views on the architectural
descriptions. MViewADL allows views of different view-
points to be related together in a way that is generic enough
to be supported by multiple relevant technologies.
Open Connector. MViewADL supports connector specifi-
cations that are customizable through refinement. Currently,
refinement has complete access to a parent’s description.
This may not always be desirable. The study of accessibility
modifiers like private and final is left to future work.
Multi-Platform Support. MViewADL focusses on dis-
tributed AO-Middleware. Our toolchain already supports
generation to JBoss and Spring.
Multiple Views and Viewpoints. MViewADL currently has
support for the three important viewpoints in distributed sys-
tems design: module, C&C, and deployment. While refine-
ment is broadly applicable, the syntax and semantics of the
ADL need to be extended to support additional viewpoints.
View and Viewpoint Relations. View relations in multi-
viewpoint representations are challenging [25]. While
MView supports refinement between views of different
viewpoints, this is only possible if the viewpoints share a
clear goal —the description of distributed systems. Adding
arbitrary viewpoints might prove challenging as well.

Discussion. The validation of MView and the ADL is lim-
ited to an application case study in the e-media domain.
However, our ADL is applicable beyond this specific ap-
plication and this specific domain, to typical distributed
component-based architectures. To further validate this, it is
part of future work to apply MView in additional case stud-
ies. As stated in the introduction, architectures for distributed
systems are the focus of MView. This strong focus, however,
limits its applicability in software systems with different ar-
chitectural styles, such as embedded systems, or the internal
structures of compilers [9].

260



7. Related Work
The typical AO-ADLs, that have also been considered in
the analysis in Section 3: DAOP-ADL [33], AO-ADL [34],
Fractal-ADL [32], AspectLEDA [24], AspectualACME [15],
π-ADL [27], Prisma [31], all use some form of AO-
Connector. While these connectors capture complex com-
position to a certain degree, they do not support the distri-
bution context in distributed software systems, nor stepwise
refinement. While inheritance could be used, instead of re-
finement, to achieve a similar separation (without the merge
operation) of stakeholder concerns in a complex composi-
tion, it is not supported by default in these AO-ADLs. As it
would require some restructuring of the composition speci-
fications in some, if not all, of these languages. Finally, with
the exception of AO-ADL and Prisma, tool-support for the
generation to multiple platforms is missing.

AO-middleware technologies such as JBoss, Spring,
GlueQoS [40], CAM/DAOP [33], DADO [39], FAC [32]
and Prose [35] do not support the evaluation of distributed
context properties. Supporting those platforms in the code
generation thus needs a similar approach as presented in
the generation to JBoss. On the other hand, platforms such
as JAC [30], AWED [23], ReflexD [36] and DyMAC/M-
Stage [21] do support the evaluation of distributed context
properties, greatly simplifying the generation to these plat-
forms.

MStage is an extension to the DyMAC platform to de-
velop DyMAC applications over different stages using re-
finement. The refinement is limited to a fixed set of context
properties of DyMAC components such as interfaces, com-
ponent names, hosts and applications. MView ADL, how-
ever, offers a middleware-independent multi-platform ADL
that supports refinement at the level of architectural views
and over an open set of properties.

ArchJava [4] brings user-defined connectors to an OO-
programming language. The connectors are customizable
and the strong presence of inheritance should allow stake-
holder separation. ArchJava, however, does not support AO-
Connectors. While MView does not focus on implementa-
tion specifications, connectors at this level would simplify
code-generation.

Batory et al. present a software composition model and
associated tool set, called AHEAD [10], that supports large-
scale refinement of aspect-like modules in a product fam-
ily. There are important differences between AHEAD and
MView. First, MView has a more focused goal, it supports
stepwise refinement of interaction, not behavior. Second,
MView supports stepwise refinement across multiple views
and viewpoints at the architecture level, while AHEAD sup-
ports multiple levels of abstraction in the design of a soft-
ware system. Finally, the AHEAD tool set does not target
AO middleware.

Model-driven development of distributed software sys-
tems partially targets a similar goal as MView: a higher-level

system description based on abstractions above platform-
specific artifacts and implementation details. In model-
driven middleware (e.g. [13, 18, 41]), multiple design mod-
els of aspects and applications can be specified, composed
and possibly verified. Once composed, these models can be
automatically synthesized to deployment descriptors for a
specific (non-AO) middleware platform of choice [13] or to
middleware implementations itself [41].

8. Conclusion and Future Work
In software architecture, AO-Connectors capture complex
compositions between components. But state-of-the art AO-
ADLs do not allow the separation of the various stakeholder
views involved in such connectors. This results in monolithic
descriptions in which these stakeholder views are tangled.

MView is a technique that enables multi-view refinement
of architectural connector descriptions. Complex composi-
tion is specified through a process of multi-view refinement
of connectors, each in the context of a specific stakeholder
view.

We have integrated MView in a prototypical ADL and
constructed an Eclipse-based tool to support MView and the
ADL. The tool supports automatic code generation to spe-
cific middleware frameworks (currently JBoss and Spring).

Our evaluation of MView in the e-Media case study
showed that MView reduces the overall stakeholder effort
(in LOC), and the relative effort of assemblers and deploy-
ers with respect to the total specification size.

It is part of our ongoing work to further enhance the
transformation framework and to validate the benefits of
interaction untangling and reuse on additional case studies.

Acknowledgments
This research is partially funded by the Interuniversity At-
traction Poles Programme Belgian State, Belgian Science
Policy, the Fund for Scientific Research (FWO) in Flanders
and by the Research Fund KU Leuven.

References
[1] Redhat inc., http://labs.jboss.com/jbossaop.

[2] Mview tool, http://distrinet.cs.kuleuven.be/software/mview.

[3] The spring enterprise platform
http://www.springsource.com/products/enterprise.

[4] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin. Lan-
guage support for connector abstractions. In Object-Oriented
Programming, 2003.

[5] P. Allen and S. Frost. Planning team roles for CBD. Addison-
Wesley Longman Publishing Co., Inc., 2001.

[6] R. Allen. A Formal Approach to Software Architecture. PhD
thesis, Carnegie Mellon, School of Computer Science, Jan-
uary 1997.

[7] S. Apel, C. Kästner, T. Leich, and G. Saake. Aspect
refinement-unifying aop and stepwise refinement. Journal of
Object Technology, 6(9):13–33, 2007.

261



[8] C. Atkinson and T. Kühne. Aspect-oriented development with
stratified frameworks. IEEE Software, 20(1):81–89, 2003.

[9] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, second edition, 2003.

[10] D. Batory, J. N. Sarvela, A. Rauschmayer, S. Member, and
S. Member. Scaling step-wise refinement. IEEE Transactions
on Software Engineering, 30, 2003.

[11] N. Boucké. Composition and Relations of Architectural Mod-
els Supported by an Architectural Description Language. PhD
thesis, October 2009.

[12] N. Boucké, D. Weyns, R. Hilliard, T. Holvoet, and A. Helle-
boogh. Characterizing relations between architectural views.
In LNCS, volume 5292. Springer, September 2008.

[13] G. Deng. Resolving component deployment & configuration
challenges for enterprise dre systems via frameworks & gen-
erative techniques. In International Conference on Software
Engineering. ACM, 2006.

[14] P. Feiler, B. Lewis, S. Vestal, and E. Colbert. An overview
of the sae architecture analysis & design language (aadl) stan-
dard. In Architecture Description Languages, volume 176.
Springer Boston, 2005.

[15] A. Garcia, C. Chavez, T. Batista, C. Sant’anna, U. Kulesza,
A. Rashid, and C. Lucena. On the modular representation of
architectural aspects. In Software Architecture, volume 4344
of LNCS. Springer Berlin / Heidelberg, 2006.

[16] A. F. Garcia, E. M. L. Figueiredo, C. N. Sant’Anna, M. Pinto,
and L. Fuentes. Representing architectural aspects with a
symmetric approach. In Early Aspects ’09. ACM, 2009.

[17] D. Garlan, R. T. Monroe, and D. Wile. Acme: An architecture
description interchange language. In CASCON’97, 1997.

[18] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale, and
B. Natarajan. An approach for supporting aspect-oriented
domain modeling. In International Conference on Generative
Programming and Component Engineering. Springer-Verlag
New York, Inc., 2003.

[19] J. Grundy. Multi-perspective specification, design and imple-
mentation of components using aspects. International Journal
of Software Engineering and Knowledge Engineering, 10(6),
December 2000.

[20] ISO/IEC. Systems and software engineering - architecture
description. ISO/IEC standard, draft D8, August 2010.

[21] B. Lagaisse. A Comprehensive Integration of AOSD and
CBSD Concepts in Middleware. PhD thesis, K.U.Leuven,
Dec. 2009.

[22] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages. IEEE Transactions on Software Engineering, 26(1),
Jan 2000.

[23] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. De Fraine,
and D. Suvée. Explicitly distributed aop using awed. In
AOSD’06. ACM, 2006.

[24] A. Navasa, M. A. Pérez-Toledano, and J. M. Murillo. An adl
dealing with aspects at software architecture stage. Inf. Softw.
Technol., 51(2), 2009.

[25] B. Nuseibeh, J. Kramer, and A. Finkelstein. Viewpoints:
meaningful relationships are difficult! In International Con-
ference on Software Engineering. IEEE Computer Society,
2003.

[26] F. Oquendo. π-arl: an architecture refinement language for
formally modelling the stepwise refinement of software archi-
tectures. SIGSOFT Softw. Eng. Notes, 29, September 2004.

[27] F. Oquendo. pi-adl: an architecture description language
based on the higher-order typed pi-calculus for specifying dy-
namic and mobile software architectures. ACM SIGSOFT
Software Engineering Notes, 29(3), 2004.

[28] K. Palma, Y. Eterovic, and J. M. Murillo. Extending the rapide
adl to specify aspect oriented software architectures. In 15th
International Conference on Software Engineering and Data
Engineering, page 170. ISCA, 2006.

[29] T. Parr and R. Quong. Antlr: A predicated (k) parser generator,
1995.

[30] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. Jac: A
flexible solution for aspect-oriented programming in java. In
Reflection, 2001.

[31] J. Pérez, I. Ramos, J. J. Martínez, P. Letelier, and E. Navarro.
Prisma: Towards quality, aspect oriented and dynamic soft-
ware architectures. In International Conference on Quality
Software, 2003.

[32] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye.
A component-based and aspect-oriented model for software
evolution. Int. J. Comput. Appl. Technol., 31(1/2), 2008.

[33] M. Pinto, L. Fuentes, and J. M. Troya. A dynamic component
and aspect-oriented platform. Computer Journal, 48(4), 2005.

[34] M. Pinto, L. Fuentes, and J. M. Troya. Specifying aspect-
oriented architectures in ao-adl. In Information and Software
Technology. Elsevier, 2011.

[35] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for
aspect-oriented programming. In AOSD’02. ACM, 2002.

[36] E. Tanter and J. Noyé. A versatile kernel for multi-language
aop. In Generative Programming and Component Engineer-
ing, LNCS. Springer Berlin / Heidelberg, 2005.

[37] M. van Dooren. Abstractions for improving, creating, and
reusing object-oriented programming languages. PhD the-
sis, Department of Computer Science, K.U.Leuven, Leuven,
Belgium, June 2007.

[38] D. Van Landuyt, S. Op de beeck, E. Truyen, and P. Verbaeten.
Building a digital publishing platform using aosd. In LNCS
Transactions on Aspect-Oriented Software Development, vol-
ume 8, December 2010.

[39] E. Wohlstadter, S. Jackson, and P. T. Devanbu. Dado: Enhanc-
ing middleware to support crosscutting features in distributed,
heterogeneous systems. In ICSE, 2003.

[40] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P. De-
vanbu. Glueqos: Middleware to sweeten quality-of-service
policy interactions. In 26th International Conference on Soft-
ware Engineering. IEEE Computer Society, 2004.

[41] C. Zhang, D. Gao, and H.-A. Jacobsen. Generic middleware
substrate through modelware. In Middleware, 2005.

262


	Introduction
	Case Study and Problem Illustration
	Requirements Analysis
	Requirements
	Existing Approaches

	MView
	Introducing MViewADL
	Multi-view Refinement
	The MView Concept
	Refinement of Declarations
	Redefinition of Members

	Tool-support and Implementation

	Code Generation for Middleware Systems
	Evaluation
	Stakeholder Effort
	Revisiting the Requirements

	Related Work
	Conclusion and Future Work



