VM-level AOP

AQOSD 2005
Sam Pullara



State of the art

@ When is AOP applied to classes?
@ Compile fime

@ Class load time
@ Hotswap
@ Runtime OO methods
@ How is AOP applied to classes?
@ Bytecode modification
@ Dynamic proxies



Compile Time

@ Pros:
@ Predictable runtime performance

@ IDE friendly (AJDT)
® Bounded set of classes and effects
@ Most compatible with current JVMs

@ Cons:
@ Must have all classes available
@ Cannot dynamically change aspects
@ Can break the license of some software
® Large up front cost



Class Load Time

@ Pros:
® Aspect decisions are deferred to deployment
@ Can be used with most hot deployment systems
@ Can apply to code unavailable at compile time
@ Cons:
@ Startup times can be arbitrarily large
® Some software incompatibilities



Hotswap

@ Pros:
@ Similar to class load time initially

@ Can be changed without reloading classes
® Deployment time configuration

@ Cons:
@ Starfup time
@ Some JVM incompatibilities
@ Requires native code in < 1.4

@ Complicated command lines (-Xdebug or
-Xjavaagent:AOP. jar, etc)



Runtime OO methods

@ Pros:
@ Very dynamic, very compatible
@ Easy to understand for OO programmers
@ Implementations are much simpler
@ Cons:
@ Often slow due to reflection usage
@ Supports many fewer pointcut types
® Startup time is affected



Bytecode modification

@ Pros:
@ Can be implemented on virtually any VM
@ Mostly invisible to the user
@ Cons:
@ Can change the shape of the class
@ Some side effects like serialization are exposed

@ Class level code only
@ Typically only one agent / weaver is possible



Dynamic Proxies

@ Pros:
@ Standard Java facility
@ Very simple

@ Cons:
@ Recursion is not easy
@ Often inefficient

@ Need to be regenerated on each run



What is natural?

@ Current AOP implementations are like
previous generics implementations

@ Debugging the current systems are often
much more difficult than plain Java

@ Without standard supfort portability suffers
between VMs and platforms

@ Many target users will be unwilling to
depend on a language feature thaf isnt
"supported”



VM-level AOP

@ Move the “weaver” to the VM

@ Its not really weaving anymore, since no
bytecode modification would be needed

@ Debugging would be simplified as the
debugging APIs would support AOP

@ Performance could be tied into the VM
optimizer more efficiently

@ Memory usage would be better because double
analysis and storage would not be needed



Other advantages

@ Technical:

@ Supporting pointcut matching on reflective
invocations would come naturally

@ The VMs are becoming managed containers,
AOP could become the development model

@ Community:

@ Adding AOP fo the VM will legitimize it in some
peoples eyes



Current projects

@ The JRockit team has a prototype

@ Research on the Jikes RIJVM is underway
(SteamLoom)



