
VM-level AOP
AOSD 2005
Sam Pullara



State of the art

When is AOP applied to classes?
Compile time
Class load time
Hotswap
Runtime OO methods

How is AOP applied to classes?
Bytecode modification
Dynamic proxies



Compile Time
Pros:

Predictable runtime performance
IDE friendly (AJDT)
Bounded set of classes and effects
Most compatible with current JVMs

Cons:
Must have all classes available
Cannot dynamically change aspects
Can break the license of some software
Large up front cost



Class Load Time

Pros:
Aspect decisions are deferred to deployment
Can be used with most hot deployment systems
Can apply to code unavailable at compile time

Cons:
Startup times can be arbitrarily large
Some software incompatibilities



Hotswap

Pros:
Similar to class load time initially
Can be changed without reloading classes
Deployment time configuration

Cons:
Startup time
Some JVM incompatibilities
Requires native code in < 1.4
Complicated command lines (-Xdebug or 
-Xjavaagent:AOP.jar, etc)



Runtime OO methods

Pros:
Very dynamic, very compatible
Easy to understand for OO programmers
Implementations are much simpler

Cons:
Often slow due to reflection usage
Supports many fewer pointcut types
Startup time is affected



Bytecode modification

Pros:
Can be implemented on virtually any VM
Mostly invisible to the user

Cons:
Can change the shape of the class
Some side effects like serialization are exposed
Class level code only
Typically only one agent / weaver is possible



Dynamic Proxies

Pros:
Standard Java facility
Very simple

Cons:
Recursion is not easy
Often inefficient
Need to be regenerated on each run



What is natural?

Current AOP implementations are like 
previous generics implementations

Debugging the current systems are often 
much more difficult than plain Java

Without standard support, portability suffers 
between VMs and platforms

Many target users will be unwilling to 
depend on a language feature that isn’t 
“supported”



VM-level AOP 

Move the “weaver” to the VM
It’s not really weaving anymore, since no 
bytecode modification would be needed

Debugging would be simplified as the 
debugging APIs would support AOP

Performance could be tied into the VM 
optimizer more efficiently

Memory usage would be better because double 
analysis and storage would not be needed



Other advantages

Technical:

Supporting pointcut matching on reflective 
invocations would come naturally

The VMs are becoming managed containers, 
AOP could become the development model

Community:

Adding AOP to the VM will legitimize it in some 
people’s eyes



Current projects

The JRockit team has a prototype
Research on the Jikes RJVM is underway 
(SteamLoom)


