
The Motorola WEAVR:
Model Weaving in a Large Industrial Context

Thomas Cottenier
Motorola Labs

Illinois Institute of Technology

thomas.cottenier@mot.com

Aswin van den Berg
Motorola Labs

aswin.vandenberg@mot.com

Tzilla Elrad
Illinois Institute of Technology

elrad@iit.edu

ABSTRACT
This paper reports on the development of an Aspect-Oriented
Modeling engine and its initial deployment within the Model-
Driven Engineering environment used in production at Motorola.
The development environment is presented in detail, through a
small example, and the current state of Aspect-Oriented Software
Development technologies are discussed in this context. The
report presents the particular decision made concerning the design
and the deployment of the Motorola WEAVR1 Aspect-Oriented
Modeling engine in light of the particular needs of the telecom
system engineering industry. First, we motivate a model weaving
approach as opposed to the more traditional aspect modeling,
code generation and code-level weaving approaches. Second, we
present a novel join point model for transition-centric state
machines, and discuss its use within a large industrial context.
Finally, we report on the initial adoption of the weaving engine
within production teams and its impact on the development
process.

Keywords
Aspect-Oriented Modeling, Model-Driven Engineering, UML 2.0,
Model Weaving

1. INTRODUCTION
This paper reports on the successful initial adoption of Aspect-
Oriented Software Development technologies within one of the
core business units at Motorola, the Networks and Enterprise
Business Unit. The Networks and Enterprise unit is a provider of
integrated voice and data communication end-to-end
infrastructure. It delivers secure two-way radio, cellular and
wireless broadband systems to government, service providers and
enterprise customers worldwide. One of its core research and
development activity deals with the development of the
forthcoming WiMAX (802.16e) infrastructure to fulfill the
demand for mobile broadband wireless solutions and take
operators to the 4th generation of mobile wireless networks.

The telecom infrastructure software industry has a long history of
Model-Driven Engineering (MDE) practices. It pioneered model-
driven software development techniques starting in the 70’s, with
the Specification and Description Languages (SDL) ITU
recommendation [1]. The SDL was initially conceived as a
specification language to unambiguously describe the behavior of
reactive, discrete systems in terms of communicating extended

1 Motorola WEAVR is an add-in to Telelogic TAU [15]. We are

pleased to provide free of charge licenses of the add-in to
academia, for research purposes.

finite state machines. Since then, it was extended with
mechanisms supporting object-orientation and has adopted a
formal semantics described in terms of Abstract State Machines.

The formal base of SDL, its support for object-orientation, its
easily understood finite state machine basis and its graphical
representation have driven an important engineering investment in
tools such as graphical editors, static analyzers, code generators
and model simulators. The use of SDL has rapidly expanded from
the area of system specification and documentation to the realm
of system design and implementation.

The unambiguous semantics of SDL has enabled the industry to
develop powerful code generators that take as input models and
deliver highly optimized platform specific code, mostly in C and
C++. The performance needs of the industry have secured a
heavy investment in code generators that guarantee a performance
overhead within 5% of the performance of the equivalent
manually written code. These optimizing code generators have
had an important effect of the system development process. The
structure of the generated code is typically pretty different from
the structure of the system models and prohibits the manual
refinement of the system at the level of the code. This constraint
has pushed more and more of the system implementation directly
into the models.

Today, at Motorola, 50% to 85% of the telecom infrastructure
systems are fully automatically generated from SDL and UML
models depending on the divisions. The remaining 15% to 50% of
the system typically deals with hardware interfacing software
such as drivers, algorithmic code for signal processing or legacy
code. The impacts of Model-Driven Engineering techniques on
productivity, reduction in development effort and reduction in
defects across the business unit are reported in [2].

The SDL community has profoundly impacted the standardization
of the UML. The UML 2.0 has adopted many of the language
features of SDL, including the composite-structure architecture
diagrams, support for transition-centric state machines (see
Section 3.2), which are characteristic of SDL behavior designs,
and parts of the SDL action language semantics. While UML 2.0
models do not have precise semantics, they can be interpreted as
SDL-like specifications using a lightweight profile. Precise UML
2.0 models can therefore unambiguously specify a system and be
fully automatically translated into executable artifacts. The
alignment of UML 2.0 and the latest SDL recommendations has
enabled the industry to migrate towards the OMG standards while
leveraging the investments in the SDL tools. Today, at Motorola,
telecom infrastructure development is performed using UML 2.0
compliant modeling notations used along with fully automated,
optimizing code generation.

2. WEAVING ASPECTS IN MODELS
Telecom infrastructure software typically has a long life-time,
which can span from 20 to 40 years. In the past, these systems
provided few added services, and where pretty stable in their
implementation.

Today, service providers have very rapidly changing requirements
and desired features. For the same technology, different operators
compete on the added-value services they provide. The increasing
number of features to be supported by the infrastructure puts a
tremendous strain on the architecture of the system. Many of
those features impact the implementation of the system in terms
of security policies, fault-tolerance capabilities, quality of service
or session movement (seamless mobility), at multiple locations in
the models.

In order to guarantee the maintainability of the system over a long
period of time, in the presence of frequently changing
requirements, it is absolutely essential to address the
modularization of these concerns. These constraints have pushed
an internal research effort towards developing better techniques
and practices for the modularization of crosscutting concerns
within the business unit.

Once the modularization capabilities of the UML 2.0 had been
exhausted, this research effort naturally turned towards Aspect-
Oriented Software Development technologies. Yet, it rapidly
became clear that the existing technologies were not adapted to
the Model-Driven Engineering environment deployed in
production. Aspect-Oriented Programming languages are not
applicable in this environment because the generated code
artifacts do not exhibit the required structure on which aspects can
hook onto. The code optimization process destroys the structural
and syntactic correspondence between the system models and the
generated code.

What is required is the full coordination of crosscutting concerns
with the base system at the level of the models, especially
behavioral models such as state machines. More specifically, we
needed a model weaver for transition-centric state machines.

The literature on Aspect-Oriented Modeling using the UML
appeared of limited help. Approaches to Aspect-Oriented design
such as Jacobson’s use case approach [3] or Theme/UML [4]
adopt a models as blue-prints approach [5] where the focus is on
specification and documentation rather than system
implementation through automatic code generation. As a result,
these approaches advocate a mapping between models describing
crosscutting concerns and aspects written in an Aspect-Oriented
Programming language, rather than the weaving of behavioral
models. For the reasons described in the previous section, this
option is not viable either for our purposes.

There is a little literature on model weaving, notably the C-SAW
constraint weaver for the GME [6], and the ATLAS
ModelWeaver [7]. While C-SAW does not support UML models,
the ModelWeaver focuses on the static structure of systems rather
than precise behavior. The only work on the modularization and
coordination of crosscutting concerns using state machine is the
work of Aldawud [8]. Aldawud’s framework uses the concurrent
region feature of Harel Statecharts to isolate crosscutting
concerns. The “weaving” is then performed by manually
correlating transition triggers and output events. This approach is

not scaleable over large models and is not practical in the case of
transition-centric state machines.

Interestingly, there is some more work being done on the weaving
of sequence diagrams [9]. Yet, sequence diagrams are mainly
used for specification and testing purposes. They are not
appropriate for precise behavior modeling, especially when
developing distributed or concurrent systems.

The Motorola Software and System Engineering Research Lab
therefore dedicated a R&D effort to deliver an industrial strength
Model Weaver adapted to the requirements of system engineering
within the Networks and Enterprise Business Unit. This research
effort resulted in a completely novel join point model for
transition-centric state machines.

This paper describes and motivates the architecture and design of
the Motorola WEAVR. Section 3 introduces the SDL style of
UML 2.0 modeling and presents the development process and the
Model-Driven Engineering stack deployed in production. Section
4 introduces the basic language constructs adopted to capture and
deploy aspects at the modeling level. Section 5 presents a new
join point model for transition-centric state machines and
motivates its use through small examples of crosscutting
appearing in models. Section 6 discusses the initial deployment of
the weaver tool and its impact on the development process.
Finally, Section 8 concludes this paper.

3. MDE AT MOTOROLA
This section describes the style of UML modeling used for system
development and the Model-Driven Engineering process deployed
in production.

3.1 UML Models for Communication Systems
Telecom systems can be characterized as being reactive discrete
systems [10]. A reactive system is a system whose behavior is
dominated by interactions between actions input to the system,
and the reactions output by the system. A discrete system is a
system whose interaction appears a discrete points and by mean
of discrete events. These events are mostly represented as
asynchronous signals that are exchanged between component
instances and the environment. The natural decomposition for
reactive behavior is the Harel Statechart [10] or state machine
diagrams.

The style of UML modeling used for telecom infrastructure
system development is highly influenced by the SDL. Beyond the
use of class diagrams, this style of modeling is characterized by
composite-structure architecture diagrams, transition-centric state
machines and the use of an action language for the complete
implementation at the model level.

3.1.1 Composite-Structure Architecture Diagrams
During architecture modeling, the internal structure of active
classes is described from a communication point of view. This
decomposition attributes responsibilities to class instances.
Architecture modeling typically takes place after, or in parallel
with, class modeling during the design phase.

Composite-structure diagrams define a hierachical decomposition
of the system. They are used early in the development process to
attribute implementation responsibilities to teams of developers
with respect to the requirements of a system, and to individual

developers within a team, with respect to the requirements of a
sub-system.

 A composite structure diagram defines the internal run-time
structure of an active class (a type of process or thread), in terms
of other active classes instances. These building blocks are
referred to as parts. Parts are also restricted to be instantiations of
active classes.

Composite structure diagrams also express the communication
within the active class by visualizing connectors between the
communication ports of the parts. A Connector specifies a
medium that enables communication between parts of an active
class or between the environment of an active class and one of its
parts.

Composite structure diagrams are pretty stable. They are unlikely
to change once they have been defined. They specify the
interfaces of the system and its components in terms of required
and realized signals.

Figure 1 illustrates the composite structure diagram of a simple
resource server. An instance of a server is composed of two
subcomponents, one dispatcher and request handlers. The number
of request handlers is unbound, and initially 0.

The dispatcher is responsible for forwarding external requests to a
request handler. It therefore maintains a table of sessions. The
session index identifies the process id (Pid) of a request handler
through a context id (CID_t).

A request handler is responsible for granting access to a resource
in a globally fault tolerant way. Access to the resource is only
granted is all the resources required for the interaction are
accessible. This is performed using a distributed transaction
protocol, such as two-phase commit (2PC). The request, commit
and abort Signals are typical of such protocols.

Architecture
Diagram

active class Server {2/2}

EnvPort

setupSession, endSession,
 resource_request,
global_commit, global_abort

 access_error

OutPort

rh : RequestHandler[0..*]/ 0
RHPort

srhPort

request, commit, abort, kill

d : Dispatcher
DPort

sdPort

request, commit, abort, kill

EnvToD

RHToEnv

resource_ack,
resource_commit,
resource_abort

3.1.2 Transition-Centric State Machines
In order to obtain an executable model, the detailed behavior of
operations and active classes must be specified. This is done
during behavior modeling.

A behavior specification may contain states (a state machine
implementation), or it may be stateless (an operation body).
Whether a state machine implementation or an operation body is
used depends on the particular behavior to be modeled. State
machine implementations are preferable when the behavior has a
reactive nature, that is, its execution heavily depends on the

history of the system. The natural decomposition of reactive
behavior uses hierarchical states and behavioral inheritance, as
opposed to a classic inheritance hierarchy. Behavioral inheritance
is out of the scope of this paper. A typical system would therefore
contain both state machine implementations and operation bodies.

Init

Ready

request(rid)/resource_commit(cid,rid);

Init

request(rid)/resource_abort(cid, rid);

Init

abort(rid)/resource_ack(cid, rid);

Init

commit(rid)/resource_ack(cid, rid);

kill()

kill()

The traditional representation of a state machine is a state-centric
view of a state machine.

Figure 2 is a state-centric specification of the external behavior of
a request handler. It defines the input signals that trigger
transitions, and the output signals that are fired on the way. State-
centric state machines give a good overview of the external
behavior of the system but are not practical for defining the
implementation of a system.

Transition-centric state machines provide a better view of the
control flow and the communication aspects of a specific set of
transitions. They are primarily used for defining the detailed
internal behavior of a reactive component. Transition-centric state
machines use explicit symbols for different actions that can be
performed during the transition. They make the control flow
explicit using decision actions, represented as diamonds.

Statechart Diagram statemachine RequestHandler :: initialize(CID_t {1/2}

Init

request(rid)

status = lock_channel(rid);

status

resource_abort(cid, rid)

[==FAIL]

status = lock_resource(rid);

[==OK]

status
[==FAIL]

resource_commit(cid,rid)

[==OK]

Ready

abort(rid) commit(rid)

resource_ack(cid, rid)

auth = services[rid].invoke();
channels[rid].send(auth);

auth_t auth;
RID_t rid;

release_channel(rid);
release_resource(rid);

release_channel(rid);
release_resource(rid);

Ready Init Init

*

kill()

Figure 1. The Composite-Structure Architecture diagram
for a simple server

Figure 2. Specification of the observable behavior of a
request handler as a state-centric state machine

Figure 3. Implementation of a request handler as a
transition-centric state machine

Statechart Diagram statemachine Dispatcher :: initialize {1/2}

Idle

setupSession(cid)

CID_t cid;
RID_t rid;

Idle

if(sessions[cid] == NULL){
 rh.append(new RequestHandler(cid));
 sessions[cid] = offspring;
}

Idle

resource_request(cid, rid)

sessions[cid].request(rid)

Idle

access_error(I_ERR)

sessions[cid]
[else]

[==NULL]

Figure 3 depicts the complete behavior implementation of the
request handler, as a transition-centric state machine.

Similarly, Figure 4 shows a portion of the implementation of a the
dispatcher as a transition-centric state machine.

3.1.3 Action Language
The use of an action language [11] makes UML models
executable, i.e. it allows designers to test and simulate models and
to fully automatically generate executable code.

An action Language is intended to be programming language
independent. It includes operations that support the synchronous
manipulation of objects, the generation and handling of signals,
and the logical constructs that support the specification of
algorithms.

Transition-centric state machine embed actions in their
transitions, as shown in Figures 3 and 4. Examples of supported
actions are variable definition, assignment, new, output, set timer,
expression statement such as calls, if statement, while statement
and delete statement.

3.2 Model Simulation, Execution and Testing
Telecom infrastructure software is typically developed in parallel
with the hardware platforms the software is designed to run on. In
many cases, the platforms are not finalized yet when key features
of the software need to be validated, tested and verified. The
ability to simulate and test the models, independently of the target
platform, early in the lifecycle, is essential.

In general, the ability to simulate and test models early in the
development lifecycle is key to the success of Model-Driven
Engineering technologies, and is the main advantage of
translationist approaches, a.k.a approaches that emphasize fully
automatic code generation through model translation.

The models of Figures 1, 3 and 4, along with the corresponding
class diagram, fully implement the base functionality of the
resource server example. Although the access methods of the
resources and the channels themselves have not yet been
implemented (they are platform specific), the base functionality
of the server can be executed in a simulation environment, tested,
and validated for conformance to its specification (Figure 2).
Figure 5 displays a trace generated by the model verifier, for a
successful resource access. The generated sequence diagram can
be displayed at a much finer grained level of detail. Figure 5 only
displays state transitions and the signals exchanged between
active class instances and the environment.

sd Trace (5) interaction DebugTrace2 {1/1}

env[1]
<<actor>>

rh[1]

d[1]

Sequence diagram trace
generated for
Server

Idle

rh ((. 3874 .))

Idle

Init

request(RID_t (.id = 12.))

Idle

Ready

commit(RID_t (.id = 12.))

Idle

Init

kill()

Idle

resource_ack(CID_t (.id = 3874.), RID_t (.id = 12.))

global_commit(CID_t (.id = 3874.), RID_t (.id = 12.))

resource_commit(CID_t (.id = 3874.), RID_t (.id = 12.))

setupSession(CID_t (.id = 3874.))

resource_request(CID_t (.id = 3874.), RID_t (.id = 12.))

endSession(CID_t (.id = 3874.))

The simulation environment allows test cases to be fed to the
system. Test cases are either derived from the system
requirements manually, or are generated from the system
specification models, such as state-centric state machines. The
test cases themselves are represented as sequence diagrams to
which verdicts are associated, or in textual form, as TTCN
(Testing and Test Control Notation) [11] test case definitions.

Once the system has been validated and thoroughly tested, the
models can be translated to platform specific executables and
tested in the field.

3.3 Crosscutting in Behavioral Models
The two-phase commit problem presented in the previous section
is a simplified representation of a real problem we have in
production. One of the systems under development is composed
of a large number of distributed subcomponents. For an
interaction to occur successfully, all those components need to
operate in a synchronized fashion. If one resource or
communication channel in the system cannot be accessed safely,
the interaction needs to be aborted or delayed. As a result, each
component needs to implement a variant of 2PC, for each
component it communicates with, which amounts to a number of
2PC request handlers that is quadratic to the number of
components. Each development team needs therefore to re-

Figure 4. Implementation of the dispatcher as a transition-
centric state machine

Figure 5. Sequence Diagram trace generated by the model
simulator for a successful resource access, for the models of
Figure 1, 2 and 4.

implement 2PC in the context of the specific resources that are
managed. In practice, different teams would implement the same
concern slightly differently, which leads to inconsistencies and
important replication of effort.

There is therefore a strong motivation to separate the
implementation of 2PC from the implementation of the specific
resource access methods, so that the common behavior can be
implemented once and instantiate in the context of all
components. The concern cannot be encapsulated using
traditional OO or statechart decomposition techniques because the
behavior that is specific to each subcomponent interacts with the
control flow of 2PC.

The next section introduces the Motorola WEAVR, an Aspect-
Oriented Modeling engine for UML 2.0 state machines.

4. THE MOTOROLA WEAVR
The Motorola WEAVR is an add-in to Telelogic TAU [15] that
performs 4 distinct functions. First, it includes a profile that
allows developers to define Aspects in UML 2.0. Second, it
provides a join point visualization engine that allows the effects
of an aspect on a model to be visualized and validated. Third, it
performs full aspect weaving at the modeling level. Finally, it
includes a simulation engine that allows aspect models to be
simulated, without breaking the modular structure of Aspects.

4.1 Aspect-Oriented Modeling
4.1.1 Aspects
In the WEAVR, an aspect is a class that is extended by the
<<aspect>> stereotype. It can contain owned members such as
attributes, operations, signal definitions or ports, which are treated
as inter-type declarations. An aspect can also contain pointcuts
and connectors. A connector is the equivalent of an AspectJ
advice.

Pointcuts and connectors are operations that are extended by the
<<pointcut>> and <<connector>> stereotypes, respectively. The
implementation of pointcuts and connectors are state machine
implementations. Connectors are bound to specific pointcuts
using the <<binds>> dependency. The order of precedence of
connectors applying to the same join points within an aspect is
defined using the <<follows>> dependency.

The scope of an aspect can be specified explicitly by declaring
<<crosscuts>> dependencies from the aspect class to the packages
or classes to which the aspect applies. If no such dependency is
specified, the aspect applies to the complete system. Other
stereotypes are used to define the order of precedence and
constraints between Aspects. For a discussion on pointcut
composition and aspect composition in the Motorola WEAVR, see
[13].

Figure 6 illustrates a simple tracing aspect that is deployed in the
scope of the server of Figure 1. The aspect contains one tracing
connector that is bound to six pointcuts. The pointcuts match all
occurrences of 6 distinct type of events: call expression actions
(method calls), output actions (sending a signal), method
executions, the initialization transition of a state machine, state
transitions and the transitions that terminate state machine
instances.

The <<binds>> stereotype binds the parameter or arguments
exposed by the pointcuts to the connector they are bound to.

<<Aspect>>

TracingAspect

::Server::Server

<<crosscuts>>

ClassDiagram1 class TracingAspect1 {1/2}

<<operation,Connector>>

tracing
a : Any

<<operation,Pointcut>>

callexprAction
x : Any

<<operation,Pointcut>>

outputAction
x : Any

<<operation,Pointcut>>

execution
x : Any

<<operation,Pointcut>>

initTransition
x : Any

<<operation,Pointcut>>

stateTransition
x : Any

<<operation,Pointcut>>

termTransition
x : Any

<<binds>>

<<binds>>

<<binds>>

<<binds>>

<<binds>>

<<binds>>

Figure 6. Deployment of an aspect that traces call expression
actions, output actions and transitions in the scope of the
server active class
The type ‘Any’ indicates a wildcard on the type of the
arguments/parameters. Figure 6 only displays a connector and
pointcuts that have one parameter. The complete tracing aspect
includes pointcuts and connectors for the different combinations.

4.1.2 Pointcuts
The modeling environment provides two primary behavior
decomposition dimensions that are complementary. While the
reactive behavior of a system can be decomposed in state
machines and sub-state machines (see behavioral inheritance,
[10]), transformational behavior can be decomposed according to
an Object-Oriented decomposition. Yet, both decompositions are
primarily hierarchical. It is therefore not surprising that some
concerns do not align with either of these decompositions.
Crosscutting concerns need therefore to be handled according to
both paradigms.

The WEAVR recognized two main categories of join points:
Action join points, that capture call expressions, timer set actions
or constructor calls and Transition join points, which capture sets
of execution paths within a state machine.

A pointcut designator is expressed as a state machine
implementation of a pointcut operation. The parameters of the
pointcuts specify which arguments or parameters of the pointcut
designator are exposed to connectors.

4.1.2.1 Action Pointcut Designators
An action pointcut designator is a state machine implementation
that features one non-terminating action.

The WEAVR limits action pointcut designtors to call expression
actions, output actions, create expression actions (constructor
calls) and timer set and reset actions.

Figure 7 shows the pointcut designators for the callExprAction
and outputAction pointcuts referred to in Figure 6. The
callExprAction pointcut designator matches a call to any method
with one parameter and one return parameter, and exposes the
argument of the call to connectors.

StatechartDiagram1 <<Pointcut>> void callexprAction(Any x) {1/1}

<<operation,Expression>>

'(.)*'
a : Any
return Any

'(.)*'(x);

StatechartDiagram1 <<Pointcut>> void outputAction(Any x) {1/1}

'(.)*'(x)

Figure 7. Action pointcut designators for a call and an output
action, with one argument

4.1.2.2 Transition Pointcuts
A transition pointcut designator is a state machine implementation
that features one transition. A transition pointcut designator is
characterized by one starting state, an event occurrence or a
method signature, and a terminating action, such as a next state
action, a return action or a stop action. A transition pointcut
designator can quantify both on the names of its states and on the
signature of its event. Quantification over states is possible
because state name are explicitly defined in the specification of a
component (state-centric state machine).

Figure 8 shows the pointcut designators for the execution and
initTransition pointcuts referred to in Figure 6. For both these
pointcuts designators, the starting state is the start state. The
pointcut designator matches transitions within the execution of a
method, matched by the signature of the pointcut designator
expression, which is annotated with the <<expression>>
stereotype. The execution pointcut is equivalent to execution
pointcut in AspectJ. It matches all the execution paths of a
method, from the start state to the return termination action.

The initTransition pointcut designator captures the initialization
transitions of all the state machine implementations that match the
pointcut expression. An initialization transition is executed from
the start state to some other state. Typically, the initialization
transition performs tasks that are similar those performed by a
constructor.

StatechartDiagram1 <<Expression>> Any '(.)*'(Any x) {1/1}

StatechartDiagram1 <<Expression>> void '(.)*'(Any x) {1/1}

' * '

Figure 8. Expressions for the execution and initTransition
pointcuts

StatechartDiagram1 <<Pointcut>> void stateTransition(Any x) {1/1}

' * '

*

'(.)*'(x)

StatechartDiagram1 <<Pointcut>> void termTransition(Any x) {1/1}

*

'(.)*'(x)

Figure 9. A transition pointcut designator as a triggered
transition
Figure 9 shows the pointcut designators for the stateTransition
and termTransition pointcuts referred to in Figure 6. These
pointcut designators are implemented as triggered transitions and
are interpreted in a particular way. A transition pointcut
designator from state S to state T triggered by i matches the
complement of the execution paths from S to NOT T, triggered by
i, from all the execution paths from S to T, triggered by i.

}))(({\})({)(�� TNOTSpathTSpathTSsel
III

→→=→

This matching method is very powerful because it can localize the
important decision points in the execution of a state machine. We
will illustrate this method in the examples of section 5. For a
complete development of the matching mechanism refer to [14].

4.1.3 Aspect Connectors
In the WEAVR, connectors are always represented as the
equivalent of around advices. A connector is a state machine
implementation. It always contains a start state and a return state.
A Connector can invoke the selection (action or transition)
matched by the pointcut to which it is bound to, through the
proceed keyword. A connector takes as parameters the arguments
or parameters passed by the pointcut to which it is bound to.
Furthermore, it can retrieve information on its instantiation
context through the thisJoin point reflective API. Figure 10
illustrates a connector for a tracing aspect referred to in Figure 6.

StatechartDiagram1 <<Connector>> void tracing(Any a) {1/1}

proceed(a);

printString(jpType+" "+name+" in "+thisClassName);
thisJoinPoint::print(a);

printString(jpType+" "+name+" in "+thisClassName);

name = thisJoinPoint::getName();
jpType = thisJoinPoint::getJoinPointType();
thisClassName = thisJoinPoint::getThisClassName();

Figure 10. The tracing connector

4.2 Aspect Effect Visualization Engine
The transition matching mechanism has non-trivial semantics. It
is therefore important to provide a visualization environment so
that developers can validate the join points matched by the
pointcuts of an aspect, and visualize the effects of the aspect at
those locations. This is also very important in the context of
increasing the trust developers have in the tool, and with respect
to model simulation. The WEAVR therefore includes a
visualization engine that annotates join points, delimits transitions
matched by the transition pointcut designators and shows how
connectors are instantiated in a specific context.

4.2.1.1 Join point Annotations
When the tracing aspect of Figure 6 is applied to the server of
Figure 1, the visualization engine colors the symbols that
correspond to join points in a distinctive color and annotates them
with information about the aspect, such as the pointcut that
captured the join point and the arguments or parameters that are
exposed to connectors.

Figure 11 shows how the request handler is annotated by the
visualization engine. The symbols containing action join points
have been colored in pink, while transition join points are
localized by green marks along the matching transitions. The
triggers to those transitions have also been colored in pink.

Statechart Diagram statemachine RequestHandler :: initialize(CID_t {1/2}

Init

request(rid)

status = lock_channel(rid);

status

resource_abort(cid, rid)

[==FAIL]

status = lock_resource(rid);

[==OK]

status
[==FAIL]

resource_commit(cid,rid)

[==OK]

Ready

abort(rid) commit(rid)

resource_ack(cid, rid)

auth = services[rid].invoke
channels[rid].send(auth

auth_t auth;
RID_t rid;

release_channel(rid);
release_resource(rid)

release_channel(rid);
release_resource(rid);

Ready Init Init

*

kill()

Figure 11. The request handler as annotated by the
visualization engine after the tracing aspect has been applied

4.2.1.2 Connector Instances
When the user clicks one of the colored symbols, a state machine
implementation diagram pops up and displays the instantiation of
connectors applied to those locations.

Figure 12 shows an instance of the connector defined in figure 10,
in the context of the triggered transition from state Ready to state
Init, triggered by the commit signal. This transition matches the
pointcut of Figure 9. Note that the reflective calls to thisJoin point
have been resolved, the parameter a has been bound to the
transition parameter rid, and that the print(Any) method has been
resolved print statements that correspond to the RID_t datatype.

proceed_Ready_commit_cWTmTIW8ViiL7cNWZEH8X9xE(rid);

printString("--> "+ jpType_21+" "+ targetClassName_21+"::"+ name_21+" in "+ thisClassName_21);
printString("\r\n");
printString("Argument/Parameter :\r\n");

{
 {
 printString("RID_t (. ");
 printString(" id = ");
 printInteger(rid.id);
 printString(",");
 printString(" .) ");
 }
}
printString("\r\n");
flushprint();

printString("<-- "+ jpType_21+" "+ targetClassName_21+"::"+ name_21+" in "+ thisClassName_21);
printString("\r\n");
flushprint();

name_21 = "commit";
jpType_21 = "TriggeredTransition";
thisClassName_21 = "RequestHandler";
targetClassName_21 = "RequestHandler";

Figure 12. An instance of the connector of Figure 10, as
instantiated in the context of the transition from Ready to Init,
triggered by the commit signal
The proceed statement has been replaced by a generated method
that represents the transition join point. The implementation of
this method is represented in Figure 13.b. Figure 13.a represents
the transition from Ready to Init, triggered by the abort signal.

release_channel(rid);
release_resource(rid);

resource_ack(cid, rid)

release_channel(rid);
release_resource(rid);

resource_ack(cid, rid)

auth = services[rid].invoke();
channels[rid].send(auth);

Figure 13. Representations of the matched transitions from
state Ready to state Init, triggered by the abort and commit
signals, respectively

4.3 Simulation, Weaving and Execution
The WEAVR tool includes an Aspect-Oriented simulation engine.
The simulator executes Aspect-Oriented models in such a way
that:

1. The modular structure of Connectors is maintained
2. The models execute in a semantically equivalent way to the

woven model
When encountering a join point, the simulation environment
“jumps” to the connector instances bound to the join points, and
returns control to the original model after the execution of the
connector instances. This allows developers to familiarize
themselves with the semantics of Aspects and test the woven
models before full weaving is performed. The final weaving is
performed right before code generation. Developers are never
supposed to manually inspect a woven model. Various
optimizations can therefore be performed while the presentation
elements of the model can be disregarded.

13.a. 13.b.

5. EXAMPLES
This section illustrates the use of the Motorola WEAVR through
two examples of crosscutting concerns pertaining to the server
example of Figure 1.

5.1 Transaction Timeout Aspect
The request handler of Figure 3 has one major weakness. It the
instance enters the Ready state, but never receives a commit or
abort signal, it will never terminate and will not be able to handle
new requests. It is therefore safer to terminate the instance if
neither the commit or abort signals occur after a given delay. The
aspect of Figure 14 implements a timeout concern for the 2PC
protocol. First it introduces a new transition in the request
handler, a transition from Ready to termination, triggered by the
toTimer timeout timer. Second it resets the toTimer timer before
every transition from Init to Ready, triggered by request.

ClassDiagram1 class '2PCTimeoutAspect' {1/1}

<<operation,Pointcut>>

requestCommitTransition
x : RID_t

<<operation,Connector>>

Timeout
a : RID_t

<<binds>>

proceed(a);

set toTimer() = now + delay;

Ready

toTimer()

Init

request(x)

Ready

Figure 14. A timeout aspect for the 2PC protocol of Figure 3
This aspect illustrates the semantics of the transition join point
matching mechanism discussed in Section 4.1.2.2. The transition
matched by the pointcut is the Decision Answer Transition from
the last decision point on the value of status, to the state Ready.
Figure 15 shows the green delimitations marks for this transition
in the visualization engine (15.a), the connector instance for this
transition (15.b), and a representation of the matched transition
(15.c), as an implementation of the generated method that
replaced the proceed statement in the connector instance.

Ready

toTimer_1()

Init

set toTimer_1() = now + delay;

'proceed__op_OK_request_cZjGkLR*YovLCTHjZEApohzL'(rid);

Init

request(rid)

status = lock_channel(rid);

status

resource_abort(cid, rid)

[==FAIL]

status = lock_resource(rid);

[==OK]

status
[==FAIL]

resource_commit(cid,rid)

[==OK] / {

} release_channel(rid);

release_resource(rid);

Ready Init

resource_commit(cid,rid)

Figure 15. Delimitation of the transition matching the
pointcut of Figure 14 in the visualization engine, the
corresponding connector instance and matched transition

5.2 Two-Phase Commit Aspect
As discussed in Section 3.3, there is a strong motivation to
separate the implementation of the 2PC protocol from the
implementation elements that are specific to the request handler
of Figure 3. Figure 16 shows how this separation can be achieved
using the WEAVR. The 2PCAspect package encapsulates the
signal definitions and state transitions required to implement the
specification of Figure 2. The ResourceAspect encapsulates all
the methods that are specific to the particular resource managed
by the request handler.

::SimpleServer::SimpleServer

<<Aspect>>

ResourceAspect

<<crosscuts>>

'2PCAspect'

<<statemachine>>

::ServerAspects::'2PCAspect'::RequestHandler::initialize

<<Aspect>>

::ServerAspects::'2PCAspect'::'2PCReaction'

 <<crosscuts>>

<<follows>>

Figure 16. Aspect-Oriented implementation of the request
handler of Figure 3. The aspects separate the implementation
of the 2PC protocol from the elements that are specific to a
particular resource request handler

5.2.1 Enforcement of the 2PC Specification
Aspect-Orientation enables the implementation of the 2PC
protocol to be enforced, independently of the implementation of
the specific resource access implementation. This is realized by
separating the implementation of the transitions that handle the
protocol input messages from the reactive output actions that
control the signals that are required to implement the specification
of Figure 2.

The implementation of the Aspect that enforces 2PC contains two
main sub components.

First, the transitions that handle the 2PC input signals, and the
corresponding state transitions they trigger are defined separately
in a state machine implementation, represented in Figure 17. This
state machine implementation is merged with the state machine
implementation of the request handler, as indicated in Figure 16.
The corresponding ports and signal definitions are defined in the
2PCAspect.

Second, the mandatory reaction of the system is defined be the
aspect by the pointcuts and connectors illustrated in Figure 18.

This separation allows the reaction of 2PC to be enforced
independently of the specific resource access methods.

Statechart Diagram statemachine RequestHandler :: initialize(CID_t cid) {1/1}

Init

request(rid)

Ready

abort(rid) commit(rid)

RID_t rid;

Ready Init Init

*

kill()

Figure 17. 2PC input message state transitions as a state
machine introduction, to be merged with the request handler

15.a

15.c

15.b

ClassDiagram1 active <<Aspect>>class '2PCAspect' {1/1}

<<operation,Pointcut>>

RequestCommitTransition

x : RID_t

<<operation,Connector>>

Commit

r : RID_t

<<binds>>

<<operation,Pointcut>>

RequestAbortTransition
<<operation,Connector>>

Abort <<binds>>

<<operation,Pointcut>>

AccessAckTransition
<<operation,Connector>>

Ack
<<binds>>

proceed(r);

resource_commit(cid,r)

Init

request(x)

Ready

proceed(r);

resource_abort(cid,r)

Init

request(x)

Init

proceed(r);

resource_ack(cid,r)

Ready

'(.)*'(x)

Init

Figure 18. Pointcuts and connectors of the 2PC aspect, which
enforce the reaction of the system, with respect to the
transition defined in the state machine of figure 17

5.2.2 Resource Specific Behavior
The implementation of the resource access methods that are
specific to each request handlers can now be defined
independently of the 2PC protocol implementation. Figure 19
illustrates the binding diagram, the pointcut designators and the
connector implementations for the resource management aspect.

Figure 19.a. shows how the transition from Init to Init, triggered
by request is implemented. This also illustrates how states can be
referred by connector implementation. This transition is not
defined in the 2PC aspect because it is specific to the resource
management methods. It is important to note that the transition
that is introduced by connector 19.a is matched by pointcuts 18.d
and pointcuts 19.d. The evaluation of these pointcuts needs
therefore to occur after the connector 19.a has been applied to the
system. This constraint is expressed by the <<follows>>
dependencies in the diagrams of Figure 16 and Figure 19. The
latter expresses that pointcut initTransition (19.d) is evaluated
after connectors 19.a, LockResources and 19.f have been bound.

ClassDiagram1 active <<Aspect>>class ResourceAspect {1/1}

<<operation,Pointcut>>

RequestTransition

x : RID_t

<<operation,Connector>>

LockResources

r : RID_t

<<binds>>

<<operation,Pointcut>>

CommitAccessTransition

x : RID_t

<<operation,Connector>>

AccessResources

r : RID_t

<<binds>>

<<operation,Pointcut>>

InitTransition

x : RID_t

<<operation,Connector>>

ReleaseResources

r : RID_t
<<binds>>

<<follows>>

<<follows>>

proceed(r);

status = lock_resource(r);

status

status = lock_channel(r);

[==OK]

Init

[==FAIL]

status

[==OK]

[==FAIL]

Init

request(x)

Ready

proceed(r);

release_channel(r);
release_resource(r);

*

'(.)*'(x)

Init

proceed(r);

token = services[r].invoke();
channels[r].send(token);

Ready

commit(x)

Init

Figure 19. Binding diagram, pointcuts and connectors of the
resource management aspect which encapsulates the specific
resource access methods for the request handler

6. ADOPTATION AND DEPLOYMENT
The WEAVR is currently being used in production by
development teams within the Network and Enterprise Business
Unit. For the moment, adoption is limited to very simple aspects,
such as the tracing aspect and the timeout aspect.

In particular, the tracing aspect proved very useful for initial
deployment of the system on the platforms. These platforms are
pretty primitive, and do not include a standard debugging
environment. The model simulator includes advanced tracing
capabilities, as shown in Figure 5. The tracing aspect allows us to
provide the same tracing functionality for platform runs, without
having to clutter the models with tracing statements.

The deployment of such aspects does not affect the development
process at all, which facilitates adoption across development
teams. Furthermore, as these aspects are pretty generic, they can
be deployed by developers transparently, without requiring a
complete understanding of the technology from their part.

‘2PCAspect’

18.a. 18.b.

18.c. 18.d.

18.e. 18.f.

19.a. 19.b.

19.c. 19.d.

19.e. 19.f.

Yet, we think that the most benefits from the use of Aspect-
Oriented Software Development technologies could come from
the deployment of aspects that enforce the conformance to
specifications, such as the 2PC specification of Figure 2. The
aspect-oriented implementation of the request handler discussed
in the previous section could potentially reduce a lot of the
development costs in one of the systems under development,
while increasing consistency and the overall quality. A first
estimate indicates that the overall size of the models could be
reduced by 25 to 40%, if concerns such as fault-tolerance and
security would be implemented as aspects.

Yet, the implementation and deployment of such aspects would
be radical change in the development process. Today, the
responsibilities concerning fault-tolerance and security
requirements are specified at the level of the individual
components. This has the advantage that the development teams
know exactly how to implement these concerns for the
components they are responsible for. Yet, it leads to an important
replication of effort. The implementation of these concerns as
aspects would require that these requirements would be specified
at the system level, in a form that could easily be mapped to
aspect implementations.

The degree of maturity of the Motorola WEAVR is still in an
initial stage. It is critical to improve the degree of confidence in
the tool. The following activities are therefore critical:

1. Further develop the visualization engine and the simulation
and testing capabilities for aspect-oriented models. This is
essential to increase the degree of understanding and
confidence in aspect-oriented technologies among the
development teams

2. Accelerate and generalize the deployment of simple aspects
such as the tracing and timeout aspects across the business
unit (bottom-up approach)

3. Conduct a quantitative study on the potential benefits of
aspect-orientation for systems under current development,
concerning overall quality and model size reduction. We are
working on factoring fault-tolerance and security concerns
out of production models and gathering data that could
convince upper management to adopt the technology early in
the development life cycle in the future (top-down approach)

4. Integrate the research body on aspect-oriented architecture
and requirement engineering (early aspects) in order to be
ready to describe aspect-oriented solutions at the
specification level

7. CONCLUSIONS
We presented an industrial Model-Driven Engineering
development environment and discussed Aspect-Oriented
technologies in this context. We presented the Motorola WEAVR,
its join point model for transition-centric state machines, and
discussed its current degree of adoption. The particular join point
model adopted is of essential importance. All the transition
pointcut designators presented in the paper are expressed in terms
of stable specification elements rather than implementation
elements. This enables aspects to be defined in terms of a system
specification, without requiring a complete knowledge of its
implementation, giving such aspects additional robustness. This
might reveal a differentiating advantage of Aspect-Oriented
techniques applied at the modeling level over AOP technologies.

REFERENCES
[1] ITU, Z. 100: Specification and Description Language (SDL),

International Telecommunication Union, 2000

[2] Baker, P., Weil, F., Liou, S., Model-Driven Engineering in a
Large Industrial Context, In Proceedings 8th International
Conference on Model Driven Engineering Languages and
Systems (MoDELS 2005), (Montego Bay, Jamaica, October
2005), LNCS 3844, pp. 100-109, Springer-Verlag, 2005

[3] Jacobson, I. Ng, P-W.: Aspect-Oriented Software
Development with Use Cases. Addison-Wesley, 2004

[4] Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and
Design. The Theme Approach. Addison-Wesley, 2005

[5] Cottenier, T., van den Berg, A., Elrad, T. Model Weaving:
Bridging the Divide between Translationists and
Elaborationists. Workshop on Aspect-Oriented Modeling at
the 9th International Conference on Model Driven
Engineering Languages and Systems, Milan, Italy, 2006

[6] Gray, J., Bapty, T., Neema, S., Tuck, J.: Handling
crosscutting constraints in domain-specific modeling.
Communications of the ACM, Volume 44, Issue 10, Oct.
2001, pp.87-93, 2001

[7] Bézivin, J., Jouault, F., Valduriez, P. First Experiments with
a ModelWeaver, Workshop on Best Practices for Model
Driven Software Development held in conjunction with the
19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Vancouver, Canada, 2004.

[8] Elrad, T., Aldawud, O., Bader, A.: Aspect Oriented
Modeling - Bridging the Gap Between Design and
Implementation. In Proceedings of the First International
Conference on Generative Programming and Component
Engineering (GPCE 2002 6-8, 2002), ACM Press,
Pittsburgh, PA, USA, 2002

[9] Klein, J., Helouet, L, Jézéquel, J.M.: Semantic-based
Weaving of Scenarios. In Proceedins. of the 5th International
Conference on Aspect-Oriented Software Development
(AOSD’ 06), ACM Press, Bonn,Germany, 2006

[10] Harel, David. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8, 1987

[11] OMG. Semantics for a foundational subset for executable
UML models - request for proposal. Request for Proposal
ad/2005-04-02, Object Management Group, 2005.

[12] ETSI: Test and Test Conformance Notation, version 3,
TTCN-3 Homepage, http://www.ttcn-3.org, 2005

[13] Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect
Composition and Interference in the Motorola Aspect-
Oriented Model Weaver, Workshop on Aspect-Oriented
Modeling at the 9th International Conference on Model
Driven Engineering Languages and Systems, Italy, 2006

[14] Cottenier, T., van den Berg, A., Elrad, T.: Joinpoint
Inference from Behavioral Specification to Implementation,
submitted to ECOOP’07, available at
www.iit.edu/~concur/weavr/papers/, 2006

[15] Telelogic. TAU G2 homepage,
http://www.telelogic.com/products/tau/index.cfm, 2005

