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ABSTRACT 
This paper reports on the development of an Aspect-Oriented 
Modeling engine and its initial deployment within the Model-
Driven Engineering environment used in production at Motorola. 
The development environment is presented in detail, through a 
small example, and the current state of Aspect-Oriented Software 
Development technologies are discussed in this context. The 
report presents the particular decision made concerning the design 
and the deployment of the Motorola WEAVR1 Aspect-Oriented 
Modeling engine in light of the particular needs of the telecom 
system engineering industry. First, we motivate a model weaving 
approach as opposed to the more traditional aspect modeling, 
code generation and code-level weaving approaches. Second, we 
present a novel join point model for transition-centric state 
machines, and discuss its use within a large industrial context. 
Finally, we report on the initial adoption of the weaving engine 
within production teams and its impact on the development 
process. 
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1. INTRODUCTION 
This paper reports on the successful initial adoption of Aspect-
Oriented Software Development technologies within one of the 
core business units at Motorola, the Networks and Enterprise 
Business Unit. The Networks and Enterprise unit is a provider of 
integrated voice and data communication end-to-end 
infrastructure. It delivers secure two-way radio, cellular and 
wireless broadband systems to government, service providers and 
enterprise customers worldwide. One of its core research and 
development activity deals with the development of the 
forthcoming WiMAX (802.16e) infrastructure to fulfill the 
demand for mobile broadband wireless solutions and take 
operators to the 4th generation of mobile wireless networks.  

The telecom infrastructure software industry has a long history of 
Model-Driven Engineering (MDE) practices. It pioneered model-
driven software development techniques starting in the 70’s, with 
the Specification and Description Languages (SDL) ITU 
recommendation [1].  The SDL was initially conceived as a 
specification language to unambiguously describe the behavior of 
reactive, discrete systems in terms of communicating extended 

                                                                 
1 Motorola WEAVR is an add-in to Telelogic TAU [15]. We are 

pleased to provide free of charge licenses of the add-in to 
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finite state machines. Since then, it was extended with 
mechanisms supporting object-orientation and has adopted a 
formal semantics described in terms of Abstract State Machines. 

The formal base of SDL, its support for object-orientation, its 
easily understood finite state machine basis and its graphical 
representation have driven an important engineering investment in 
tools such as graphical editors, static analyzers, code generators 
and model simulators. The use of SDL has rapidly expanded from 
the area of system specification and documentation to the realm 
of system design and implementation. 

The unambiguous semantics of SDL has enabled the industry to 
develop powerful code generators that take as input models and 
deliver highly optimized platform specific code, mostly in C and 
C++.  The performance needs of the industry have secured a 
heavy investment in code generators that guarantee a performance 
overhead within 5% of the performance of the equivalent 
manually written code. These optimizing code generators have 
had an important effect of the system development process. The 
structure of the generated code is typically pretty different from 
the structure of the system models and prohibits the manual 
refinement of the system at the level of the code. This constraint 
has pushed more and more of the system implementation directly 
into the models.  

Today, at Motorola, 50% to 85% of the telecom infrastructure 
systems are fully automatically generated from SDL and UML 
models depending on the divisions. The remaining 15% to 50% of 
the system typically deals with hardware interfacing software 
such as drivers, algorithmic code for signal processing or legacy 
code. The impacts of Model-Driven Engineering techniques on 
productivity, reduction in development effort and reduction in 
defects across the business unit are reported in [2]. 

The SDL community has profoundly impacted the standardization 
of the UML. The UML 2.0 has adopted many of the language 
features of SDL, including the composite-structure architecture 
diagrams, support for transition-centric state machines (see 
Section 3.2), which are characteristic of SDL behavior designs, 
and parts of the SDL action language semantics. While UML 2.0 
models do not have precise semantics, they can be interpreted as 
SDL-like specifications using a lightweight profile. Precise UML 
2.0 models can therefore unambiguously specify a system and be 
fully automatically translated into executable artifacts. The 
alignment of UML 2.0 and the latest SDL recommendations has 
enabled the industry to migrate towards the OMG standards while 
leveraging the investments in the SDL tools. Today, at Motorola, 
telecom infrastructure development is performed using UML 2.0 
compliant modeling notations used along with fully automated, 
optimizing code generation. 



2. WEAVING ASPECTS IN MODELS 
Telecom infrastructure software typically has a long life-time, 
which can span from 20 to 40 years. In the past, these systems 
provided few added services, and where pretty stable in their 
implementation.  

Today, service providers have very rapidly changing requirements 
and desired features. For the same technology, different operators 
compete on the added-value services they provide. The increasing 
number of features to be supported by the infrastructure puts a 
tremendous strain on the architecture of the system. Many of 
those features impact the implementation of the system in terms 
of security policies, fault-tolerance capabilities, quality of service 
or session movement (seamless mobility), at multiple locations in 
the models.  

In order to guarantee the maintainability of the system over a long 
period of time, in the presence of frequently changing 
requirements, it is absolutely essential to address the 
modularization of these concerns. These constraints have pushed 
an internal research effort towards developing better techniques 
and practices for the modularization of crosscutting concerns 
within the business unit.  

Once the modularization capabilities of the UML 2.0 had been 
exhausted, this research effort naturally turned towards Aspect-
Oriented Software Development technologies. Yet, it rapidly 
became clear that the existing technologies were not adapted to 
the Model-Driven Engineering environment deployed in 
production. Aspect-Oriented Programming languages are not 
applicable in this environment because the generated code 
artifacts do not exhibit the required structure on which aspects can 
hook onto. The code optimization process destroys the structural 
and syntactic correspondence between the system models and the 
generated code.  

What is required is the full coordination of crosscutting concerns 
with the base system at the level of the models, especially 
behavioral models such as state machines. More specifically, we 
needed a model weaver for transition-centric state machines.  

The literature on Aspect-Oriented Modeling using the UML 
appeared of limited help. Approaches to Aspect-Oriented design 
such as Jacobson’s use case approach [3] or Theme/UML [4] 
adopt a models as blue-prints approach [5] where the focus is on 
specification and documentation rather than system 
implementation through automatic code generation. As a result, 
these approaches advocate a mapping between models describing 
crosscutting concerns and aspects written in an Aspect-Oriented 
Programming language, rather than the weaving of behavioral 
models. For the reasons described in the previous section, this 
option is not viable either for our purposes.  

There is a little literature on model weaving, notably the C-SAW 
constraint weaver for the GME [6], and the ATLAS 
ModelWeaver [7]. While C-SAW does not support UML models, 
the ModelWeaver focuses on the static structure of systems rather 
than precise behavior. The only work on the modularization and 
coordination of crosscutting concerns using state machine is the 
work of Aldawud [8].  Aldawud’s framework uses the concurrent 
region feature of Harel Statecharts to isolate crosscutting 
concerns. The “weaving” is then performed by manually 
correlating transition triggers and output events.  This approach is 

not scaleable over large models and is not practical in the case of 
transition-centric state machines. 

Interestingly, there is some more work being done on the weaving 
of sequence diagrams [9]. Yet, sequence diagrams are mainly 
used for specification and testing purposes. They are not 
appropriate for precise behavior modeling, especially when 
developing distributed or concurrent systems. 

The Motorola Software and System Engineering Research Lab 
therefore dedicated a R&D effort to deliver an industrial strength 
Model Weaver adapted to the requirements of system engineering 
within the Networks and Enterprise Business Unit. This research 
effort resulted in a completely novel join point model for 
transition-centric state machines. 

This paper describes and motivates the architecture and design of 
the Motorola WEAVR. Section 3 introduces the SDL style of 
UML 2.0 modeling and presents the development process and the 
Model-Driven Engineering stack deployed in production. Section 
4 introduces the basic language constructs adopted to capture and 
deploy aspects at the modeling level. Section 5 presents a new 
join point model for transition-centric state machines and 
motivates its use through small examples of crosscutting 
appearing in models. Section 6 discusses the initial deployment of 
the weaver tool and its impact on the development process. 
Finally, Section 8 concludes this paper. 

3. MDE AT MOTOROLA 
This section describes the style of UML modeling used for system 
development and the Model-Driven Engineering process deployed 
in production. 

3.1 UML Models for Communication Systems 
Telecom systems can be characterized as being reactive discrete 
systems [10]. A reactive system is a system whose behavior is 
dominated by interactions between actions input to the system, 
and the reactions output by the system. A discrete system is a 
system whose interaction appears a discrete points and by mean 
of discrete events. These events are mostly represented as 
asynchronous signals that are exchanged between component 
instances and the environment. The natural decomposition for 
reactive behavior is the Harel Statechart [10] or state machine 
diagrams. 

The style of UML modeling used for telecom infrastructure 
system development is highly influenced by the SDL. Beyond the 
use of class diagrams, this style of modeling is characterized by 
composite-structure architecture diagrams, transition-centric state 
machines and the use of an action language for the complete 
implementation at the model level. 

3.1.1 Composite-Structure Architecture Diagrams 
During architecture modeling, the internal structure of active 
classes is described from a communication point of view.  This 
decomposition attributes responsibilities to class instances. 
Architecture modeling typically takes place after, or in parallel 
with, class modeling during the design phase.  

Composite-structure diagrams define a hierachical decomposition 
of the system. They are used early in the development process to 
attribute implementation responsibilities to teams of developers 
with respect to the requirements of a system, and to individual 



developers within a team, with respect to the requirements of a 
sub-system. 

 A composite structure diagram defines the internal run-time 
structure of an active class (a type of process or thread), in terms 
of other active classes instances. These building blocks are 
referred to as parts. Parts are also restricted to be instantiations of 
active classes. 

Composite structure diagrams also express the communication 
within the active class by visualizing connectors between the 
communication ports of the parts. A Connector specifies a 
medium that enables communication between parts of an active 
class or between the environment of an active class and one of its 
parts. 

Composite structure diagrams are pretty stable. They are unlikely 
to change once they have been defined. They specify the 
interfaces of the system and its components in terms of required 
and realized signals. 

Figure 1 illustrates the composite structure diagram of a simple 
resource server. An instance of a server is composed of two 
subcomponents, one dispatcher and request handlers. The number 
of request handlers is unbound, and initially 0.  

The dispatcher is responsible for forwarding external requests to a 
request handler. It therefore maintains a table of sessions. The 
session index identifies the process id (Pid) of a request handler 
through a context id (CID_t). 

A request handler is responsible for granting access to a resource 
in a globally fault tolerant way. Access to the resource is only 
granted is all the resources required for the interaction are 
accessible. This is performed using a distributed transaction 
protocol, such as two-phase commit (2PC). The request, commit 
and abort Signals are typical of such protocols. 
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3.1.2 Transition-Centric State Machines 
In order to obtain an executable model, the detailed behavior of 
operations and active classes must be specified. This is done 
during behavior modeling.  

A behavior specification may contain states (a state machine 
implementation), or it may be stateless (an operation body). 
Whether a state machine implementation or an operation body is 
used depends on the particular behavior to be modeled. State 
machine implementations are preferable when the behavior has a 
reactive nature, that is, its execution heavily depends on the 

history of the system. The natural decomposition of reactive 
behavior uses hierarchical states and behavioral inheritance, as 
opposed to a classic inheritance hierarchy. Behavioral inheritance 
is out of the scope of this paper. A typical system would therefore 
contain both state machine implementations and operation bodies. 
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The traditional representation of a state machine is a state-centric 
view of a state machine. 

Figure 2 is a state-centric specification of the external behavior of 
a request handler.  It defines the input signals that trigger 
transitions, and the output signals that are fired on the way. State-
centric state machines give a good overview of the external 
behavior of the system but are not practical for defining the 
implementation of a system.   

Transition-centric state machines provide a better view of the 
control flow and the communication aspects of a specific set of 
transitions. They are primarily used for defining the detailed 
internal behavior of a reactive component. Transition-centric state 
machines use explicit symbols for different actions that can be 
performed during the transition. They make the control flow 
explicit using decision actions, represented as diamonds. 

Statechart Diagram statemachine RequestHandler :: initialize( CID_t {1/2}

 

Init

request(rid)

status = lock_channel(rid);

status

resource_abort(cid, rid)

[==FAIL]

status = lock_resource(rid);

[==OK]

status
[==FAIL]

resource_commit(cid,rid)

[==OK]

Ready

abort(rid) commit(rid)

resource_ack(cid, rid)

auth = services[rid].invoke();
channels[rid].send(auth);

auth_t auth;
RID_t rid;

release_channel(rid);
release_resource(rid);

release_channel(rid);
release_resource(rid);

Ready Init Init

*

kill()

 
 

Figure 1. The Composite-Structure Architecture diagram 
for a simple server 

Figure 2. Specification of the observable behavior of a 
request handler as a state-centric state machine 

Figure 3. Implementation of a request handler as a 
transition-centric state machine 



Statechart Diagram statemachine Dispatcher :: initialize {1/2}
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Figure 3 depicts the complete behavior implementation of the 
request handler, as a transition-centric state machine. 

Similarly, Figure 4 shows a portion of the implementation of a the 
dispatcher as a transition-centric state machine. 

3.1.3 Action Language 
The use of an action language [11] makes UML models 
executable, i.e. it allows designers to test and simulate models and 
to fully automatically generate executable code. 

An action Language is intended to be programming language 
independent. It includes operations that support the synchronous 
manipulation of objects, the generation and handling of signals, 
and the logical constructs that support the specification of 
algorithms. 

Transition-centric state machine embed actions in their 
transitions, as shown in Figures 3 and 4. Examples of supported 
actions are variable definition, assignment, new, output, set timer, 
expression statement such as calls, if statement, while statement 
and delete statement. 

3.2 Model Simulation, Execution and Testing 
Telecom infrastructure software is typically developed in parallel 
with the hardware platforms the software is designed to run on. In 
many cases, the platforms are not finalized yet when key features 
of the software need to be validated, tested and verified. The 
ability to simulate and test the models, independently of the target 
platform, early in the lifecycle, is essential. 

In general, the ability to simulate and test models early in the 
development lifecycle is key to the success of Model-Driven 
Engineering technologies, and is the main advantage of 
translationist approaches, a.k.a approaches that emphasize fully 
automatic code generation through model translation. 

The models of Figures 1, 3 and 4, along with the corresponding 
class diagram, fully implement the base functionality of the 
resource server example. Although the access methods of the 
resources and the channels themselves have not yet been 
implemented (they are platform specific), the base functionality 
of the server can be executed in a simulation environment, tested, 
and validated for conformance to its specification (Figure 2). 
Figure 5 displays a trace generated by the model verifier, for a 
successful resource access. The generated sequence diagram can 
be displayed at a much finer grained level of detail. Figure 5 only 
displays state transitions and the signals exchanged between 
active class instances and the environment. 

sd Trace (5) interaction DebugTrace2 {1/1}
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The simulation environment allows test cases to be fed to the 
system. Test cases are either derived from the system 
requirements manually, or are generated from the system 
specification models, such as state-centric state machines. The 
test cases themselves are represented as sequence diagrams to 
which verdicts are associated, or in textual form, as TTCN 
(Testing and Test Control Notation) [11] test case definitions. 

Once the system has been validated and thoroughly tested, the 
models can be translated to platform specific executables and 
tested in the field. 

3.3 Crosscutting in Behavioral Models 
The two-phase commit problem presented in the previous section 
is a simplified representation of a real problem we have in 
production. One of the systems under development is composed 
of a large number of distributed subcomponents. For an 
interaction to occur successfully, all those components need to 
operate in a synchronized fashion. If one resource or 
communication channel in the system cannot be accessed safely, 
the interaction needs to be aborted or delayed. As a result, each 
component needs to implement a variant of 2PC, for each 
component it communicates with, which amounts to a number of 
2PC request handlers that is quadratic to the number of 
components. Each development team needs therefore to re-

Figure 4. Implementation of the dispatcher as a transition-
centric state machine 

Figure 5. Sequence Diagram trace generated by the model 
simulator for a successful resource access, for the models of 
Figure 1, 2 and 4. 



implement 2PC in the context of the specific resources that are 
managed. In practice, different teams would implement the same 
concern slightly differently, which leads to inconsistencies and 
important replication of effort. 

There is therefore a strong motivation to separate the 
implementation of 2PC from the implementation of the specific 
resource access methods, so that the common behavior can be 
implemented once and instantiate in the context of all 
components. The concern cannot be encapsulated using 
traditional OO or statechart decomposition techniques because the 
behavior that is specific to each subcomponent interacts with the 
control flow of 2PC. 

The next section introduces the Motorola WEAVR, an Aspect-
Oriented Modeling engine for UML 2.0 state machines. 

4. THE MOTOROLA WEAVR 
The Motorola WEAVR is an add-in to Telelogic TAU [15] that 
performs 4 distinct functions. First, it includes a profile that 
allows developers to define Aspects in UML 2.0. Second, it 
provides a join point visualization engine that allows the effects 
of an aspect on a model to be visualized and validated. Third, it 
performs full aspect weaving at the modeling level. Finally, it 
includes a simulation engine that allows aspect models to be 
simulated, without breaking the modular structure of Aspects. 

4.1 Aspect-Oriented Modeling 
4.1.1 Aspects 
In the WEAVR, an aspect is a class that is extended by the 
<<aspect>> stereotype. It can contain owned members such as 
attributes, operations, signal definitions or ports, which are treated 
as inter-type declarations. An aspect can also contain pointcuts 
and connectors. A connector is the equivalent of an AspectJ 
advice.  

Pointcuts and connectors are operations that are extended by the 
<<pointcut>> and <<connector>> stereotypes, respectively. The 
implementation of pointcuts and connectors are state machine 
implementations. Connectors are bound to specific pointcuts 
using the <<binds>> dependency. The order of precedence of 
connectors applying to the same join points within an aspect is 
defined using the <<follows>> dependency. 

The scope of an aspect can be specified explicitly by declaring 
<<crosscuts>> dependencies from the aspect class to the packages 
or classes to which the aspect applies. If no such dependency is 
specified, the aspect applies to the complete system. Other 
stereotypes are used to define the order of precedence and 
constraints between Aspects. For a discussion on pointcut 
composition and aspect composition in the Motorola WEAVR, see 
[13]. 

Figure 6 illustrates a simple tracing aspect that is deployed in the 
scope of the server of Figure 1. The aspect contains one tracing 
connector that is bound to six pointcuts. The pointcuts match all 
occurrences of 6 distinct type of events: call expression actions 
(method calls), output actions (sending a signal), method 
executions, the initialization transition of a state machine, state 
transitions and the transitions that terminate state machine 
instances.  

The <<binds>> stereotype binds the parameter or arguments 
exposed by the pointcuts to the connector they are bound to.  

<<Aspect>>

TracingAspect

 

 

::Server::Server
 

 

<<crosscuts>>

 

ClassDiagram1 class TracingAspect1 {1/2}
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Figure 6. Deployment of an aspect that traces call expression 
actions, output actions and transitions in the scope of the 
server active class 
The type ‘Any’ indicates a wildcard on the type of the 
arguments/parameters. Figure 6 only displays a connector and 
pointcuts that have one parameter. The complete tracing aspect 
includes pointcuts and connectors for the different combinations. 

4.1.2 Pointcuts 
The modeling environment provides two primary behavior 
decomposition dimensions that are complementary. While the 
reactive behavior of a system can be decomposed in state 
machines and sub-state machines (see behavioral inheritance, 
[10]), transformational behavior can be decomposed according to 
an Object-Oriented decomposition. Yet, both decompositions are 
primarily hierarchical. It is therefore not surprising that some 
concerns do not align with either of these decompositions. 
Crosscutting concerns need therefore to be handled according to 
both paradigms.  

The WEAVR recognized two main categories of join points: 
Action join points, that capture call expressions, timer set actions 
or constructor calls and Transition join points, which capture sets 
of execution paths within a state machine.  

A pointcut designator is expressed as a state machine 
implementation of a pointcut operation. The parameters of the 
pointcuts specify which arguments or parameters of the pointcut 
designator are exposed to connectors. 

4.1.2.1 Action Pointcut Designators 
An action pointcut designator is a state machine implementation 
that features one non-terminating action. 

The WEAVR limits action pointcut designtors to call expression 
actions, output actions, create expression actions (constructor 
calls) and timer set and reset actions. 

Figure 7 shows the pointcut designators for the callExprAction 
and outputAction pointcuts referred to in Figure 6. The 
callExprAction pointcut designator matches a call to any method 
with one parameter and one return parameter, and exposes the 
argument of the call to connectors. 



StatechartDiagram1 <<Pointcut>> void callexprAction( Any x) {1/1}

 

<<operation,Expression>>

'(.)*'
a : Any
return Any

'(.)*'(x);

 

StatechartDiagram1 <<Pointcut>> void outputAction( Any x) {1/1}

 

 

'(.)*'(x)

 
Figure 7.  Action pointcut designators for a call and an output 
action, with one argument 

4.1.2.2 Transition Pointcuts 
A transition pointcut designator is a state machine implementation 
that features one transition. A transition pointcut designator is 
characterized by one starting state, an event occurrence or a 
method signature, and a terminating action, such as a next state 
action, a return action or a stop action. A transition pointcut 
designator can quantify both on the names of its states and on the 
signature of its event. Quantification over states is possible 
because state name are explicitly defined in the specification of a 
component (state-centric state machine). 

Figure 8 shows the pointcut designators for the execution and 
initTransition pointcuts referred to in Figure 6. For both these 
pointcuts designators, the starting state is the start state. The 
pointcut designator matches transitions within the execution of a 
method, matched by the signature of the pointcut designator 
expression, which is annotated with the <<expression>> 
stereotype. The execution pointcut is equivalent to execution 
pointcut in AspectJ. It matches all the execution paths of a 
method, from the start state to the return termination action. 

The initTransition pointcut designator captures the initialization 
transitions of all the state machine implementations that match the 
pointcut expression. An initialization transition is executed from 
the start state to some other state. Typically, the initialization 
transition performs tasks that are similar those performed by a 
constructor. 

StatechartDiagram1 <<Expression>> Any '(.)*'( Any x) {1/1}

 

 

 
StatechartDiagram1 <<Expression>> void '(.)*'( Any x) {1/1}

 

' * '

 
Figure 8.  Expressions for the execution and initTransition 
pointcuts 

StatechartDiagram1 <<Pointcut>> void stateTransition( Any x) {1/1}

' * '

*
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StatechartDiagram1 <<Pointcut>> void termTransition( Any x) {1/1}

*

'(.)*'(x)

 
Figure 9. A transition pointcut designator as a triggered 
transition 
Figure 9 shows the pointcut designators for the stateTransition 
and termTransition pointcuts referred to in Figure 6. These 
pointcut designators are implemented as triggered transitions and 
are interpreted in a particular way. A transition pointcut 
designator from state S to state T triggered by i matches the 
complement of the execution paths from S to NOT T, triggered by 
i, from all the execution paths from S to T, triggered by i. 

}))(({\})({)( �� TNOTSpathTSpathTSsel
III

→→=→  

This matching method is very powerful because it can localize the 
important decision points in the execution of a state machine. We 
will illustrate this method in the examples of section 5. For a 
complete development of the matching mechanism refer to [14]. 

4.1.3 Aspect Connectors 
In the WEAVR, connectors are always represented as the 
equivalent of around advices. A connector is a state machine 
implementation. It always contains a start state and a return state. 
A Connector can invoke the selection (action or transition) 
matched by the pointcut to which it is bound to, through the 
proceed keyword. A connector takes as parameters the arguments 
or parameters passed by the pointcut to which it is bound to. 
Furthermore, it can retrieve information on its instantiation 
context through the thisJoin point reflective API. Figure 10 
illustrates a connector for a tracing aspect referred to in Figure 6.  

StatechartDiagram1 <<Connector>> void tracing( Any a) {1/1}
 

proceed(a);

 

printString(jpType+" "+name+" in "+thisClassName);
thisJoinPoint::print(a);

printString(jpType+" "+name+" in "+thisClassName);

name = thisJoinPoint::getName();
jpType = thisJoinPoint::getJoinPointType();
thisClassName = thisJoinPoint::getThisClassName();

Figure 10.  The tracing connector 



4.2 Aspect Effect Visualization Engine 
The transition matching mechanism has non-trivial semantics. It 
is therefore important to provide a visualization environment so 
that developers can validate the join points matched by the 
pointcuts of an aspect, and visualize the effects of the aspect at 
those locations. This is also very important in the context of 
increasing the trust developers have in the tool, and with respect 
to model simulation. The WEAVR therefore includes a 
visualization engine that annotates join points, delimits transitions 
matched by the transition pointcut designators and shows how 
connectors are instantiated in a specific context.  

4.2.1.1 Join point Annotations 
When the tracing aspect of Figure 6 is applied to the server of 
Figure 1, the visualization engine colors the symbols that 
correspond to join points in a distinctive color and annotates them 
with information about the aspect, such as the pointcut that 
captured the join point and the arguments or parameters that are 
exposed to connectors. 

Figure 11 shows how the request handler is annotated by the 
visualization engine. The symbols containing action join points 
have been colored in pink, while transition join points are 
localized by green marks along the matching transitions. The 
triggers to those transitions have also been colored in pink. 

Statechart Diagram statemachine RequestHandler :: initialize( CID_t {1/2}
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request(rid)

status = lock_channel(rid);

status

resource_abort(cid, rid)

[==FAIL]
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[==OK]
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*
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Figure 11.  The request handler as annotated by the 
visualization engine after the tracing aspect has been applied 

4.2.1.2 Connector Instances 
When the user clicks one of the colored symbols, a state machine 
implementation diagram pops up and displays the instantiation of 
connectors applied to those locations.  

Figure 12 shows an instance of the connector defined in figure 10, 
in the context of the triggered transition from state Ready to state 
Init, triggered by the commit signal. This transition matches the 
pointcut of Figure 9. Note that the reflective calls to thisJoin point 
have been resolved, the parameter a has been bound to the 
transition parameter rid, and that the print(Any) method has been 
resolved print statements that correspond to the RID_t datatype.  

 

proceed_Ready_commit_cWTmTIW8ViiL7cNWZEH8X9xE(rid);

 

printString("--> "+ jpType_21+" "+ targetClassName_21+"::"+ name_21+" in "+ thisClassName_21);
printString("\r\n");
printString("Argument/Parameter :\r\n");
 
{
    {
        printString("RID_t (. ");
        printString(" id = ");
        printInteger(rid.id);
        printString(",");
        printString(" .) ");
    }
}
printString("\r\n");
flushprint();

printString("<-- "+ jpType_21+" "+ targetClassName_21+"::"+ name_21+" in "+ thisClassName_21);
printString("\r\n");
flushprint();

name_21 = "commit";
jpType_21 = "TriggeredTransition";
thisClassName_21 = "RequestHandler";
targetClassName_21 = "RequestHandler";

 
Figure 12.  An instance of the connector of Figure 10, as 
instantiated in the context of the transition from Ready to Init, 
triggered by the commit signal 
The proceed statement has been replaced by a generated method 
that represents the transition join point. The implementation of 
this method is represented in Figure 13.b. Figure 13.a represents 
the transition from Ready to Init, triggered by the abort signal. 

 

 

 

release_channel(rid);
release_resource(rid);

 

resource_ack(cid, rid)

 

 

 

 

release_channel(rid);
release_resource(rid);

 

resource_ack(cid, rid)

auth = services[rid].invoke();
channels[rid].send(auth);

 
Figure 13.  Representations of the matched transitions from 
state Ready to state Init, triggered by the abort and commit 
signals, respectively           

4.3 Simulation, Weaving and Execution 
The WEAVR tool includes an Aspect-Oriented simulation engine. 
The simulator executes Aspect-Oriented models in such a way 
that: 

1. The modular structure of Connectors is maintained  
2. The models execute in a semantically equivalent way to the 

woven model 
When encountering a join point, the simulation environment 
“jumps” to the connector instances bound to the join points, and 
returns control to the original model after the execution of the 
connector instances. This allows developers to familiarize 
themselves with the semantics of Aspects and test the woven 
models before full weaving is performed.  The final weaving is 
performed right before code generation. Developers are never 
supposed to manually inspect a woven model. Various 
optimizations can therefore be performed while the presentation 
elements of the model can be disregarded. 

13.a. 13.b. 



5. EXAMPLES 
This section illustrates the use of the Motorola WEAVR through 
two examples of crosscutting concerns pertaining to the server 
example of Figure 1. 

5.1 Transaction Timeout Aspect 
The request handler of Figure 3 has one major weakness. It the 
instance enters the Ready state, but never receives a commit or 
abort signal, it will never terminate and will not be able to handle 
new requests. It is therefore safer to terminate the instance if 
neither the commit or abort signals occur after a given delay. The 
aspect of Figure 14 implements a timeout concern for the 2PC 
protocol. First it introduces a new transition in the request 
handler, a transition from Ready to termination, triggered by the 
toTimer timeout timer. Second it resets the toTimer timer before 
every transition from Init to Ready, triggered by request. 

ClassDiagram1 class '2PCTimeoutAspect' {1/1}

<<operation,Pointcut>>

requestCommitTransition
x : RID_t

<<operation,Connector>>

Timeout
a : RID_t

<<binds>>

 
 

proceed(a);

 

set toTimer() =  now + delay;

Ready

toTimer()

 

Init

request(x)

Ready
 

Figure 14.  A timeout aspect for the 2PC protocol of Figure 3            
This aspect illustrates the semantics of the transition join point 
matching mechanism discussed in Section 4.1.2.2. The transition 
matched by the pointcut is the Decision Answer Transition from 
the last decision point on the value of status, to the state Ready. 
Figure 15 shows the green delimitations marks for this transition 
in the visualization engine (15.a), the connector instance for this 
transition (15.b), and a representation of the matched transition 
(15.c), as an implementation of the generated method that 
replaced the proceed statement in the connector instance. 

Ready

toTimer_1()

Init

 

set toTimer_1() = now + delay;

'proceed__op_OK_request_cZjGkLR*YovLCTHjZEApohzL'(rid);

 

 

Init

request(rid)

status = lock_channel(rid);

status

resource_abort(cid, rid)

[==FAIL]

status = lock_resource(rid);

[==OK]

status
[==FAIL]

resource_commit(cid,rid)

[==OK] / {
 
} release_channel(rid);

release_resource(rid);

Ready Init

 

 

 

 

 

 

 

resource_commit(cid,rid)

 

Figure 15.  Delimitation of the transition matching the 
pointcut of Figure 14 in the visualization engine, the 
corresponding connector instance and matched transition 

5.2 Two-Phase Commit Aspect 
As discussed in Section 3.3, there is a strong motivation to 
separate the implementation of the 2PC protocol from the 
implementation elements that are specific to the request handler 
of Figure 3. Figure 16 shows how this separation can be achieved 
using the WEAVR. The 2PCAspect package encapsulates the 
signal definitions and state transitions required to implement the 
specification of Figure 2. The ResourceAspect encapsulates all 
the methods that are specific to the particular resource managed 
by the request handler. 

 

::SimpleServer::SimpleServer
 

 

<<Aspect>>

ResourceAspect

 
 

<<crosscuts>>

 

'2PCAspect'

<<statemachine>>

::ServerAspects::'2PCAspect'::RequestHandler::initialize
 

<<Aspect>>

::ServerAspects::'2PCAspect'::'2PCReaction'
 

 <<crosscuts>>

<<follows>>

 
Figure 16.  Aspect-Oriented implementation of the request 
handler of Figure 3. The aspects separate the implementation 
of the 2PC protocol from the elements that are specific to a 
particular resource request handler 

5.2.1 Enforcement of the 2PC Specification 
Aspect-Orientation enables the implementation of the 2PC 
protocol to be enforced, independently of the implementation of 
the specific resource access implementation. This is realized by 
separating the implementation of the transitions that handle the 
protocol input messages from the reactive output actions that 
control the signals that are required to implement the specification 
of Figure 2. 

The implementation of the Aspect that enforces 2PC contains two 
main sub components. 

First, the transitions that handle the 2PC input signals, and the 
corresponding state transitions they trigger are defined separately 
in a state machine implementation, represented in Figure 17. This 
state machine implementation is merged with the state machine 
implementation of the request handler, as indicated in Figure 16. 
The corresponding ports and signal definitions are defined in the 
2PCAspect. 

Second, the mandatory reaction of the system is defined be the 
aspect by the pointcuts and connectors illustrated in Figure 18. 

This separation allows the reaction of 2PC to be enforced 
independently of the specific resource access methods. 

Statechart Diagram statemachine RequestHandler :: initialize( CID_t cid) {1/1}

 

Init

request(rid)

Ready

abort(rid) commit(rid)

RID_t rid;

Ready Init Init

*

kill()

 
Figure 17.  2PC input message state transitions as a state 
machine introduction, to be merged with the request handler 

15.a 

15.c 

15.b 



ClassDiagram1 active <<Aspect>>class '2PCAspect' {1/1}

<<operation,Pointcut>>

RequestCommitTransition

x : RID_t

<<operation,Connector>>

Commit

r : RID_t

<<binds>>

<<operation,Pointcut>>

RequestAbortTransition
<<operation,Connector>>

Abort <<binds>>

<<operation,Pointcut>>

AccessAckTransition
<<operation,Connector>>

Ack
<<binds>>

 
 

proceed(r);

 

resource_commit(cid,r)

 

 
Init

request(x)

Ready
 

 

proceed(r);

 

resource_abort(cid,r)

 

 
Init

request(x)

Init
 

 

proceed(r);

 

resource_ack(cid,r)

 

 
Ready

'(.)*'(x)

Init
 

Figure 18.  Pointcuts and connectors of the 2PC aspect, which 
enforce the reaction of the system, with respect to the 
transition defined in the state machine of figure 17 

5.2.2 Resource Specific Behavior 
The implementation of the resource access methods that are 
specific to each request handlers can now be defined 
independently of the 2PC protocol implementation. Figure 19 
illustrates the binding diagram, the pointcut designators and the 
connector implementations for the resource management aspect. 

Figure 19.a. shows how the transition from Init to Init, triggered 
by request is implemented. This also illustrates how states can be 
referred by connector implementation. This transition is not 
defined in the 2PC aspect because it is specific to the resource 
management methods. It is important to note that the transition 
that is introduced by connector 19.a is matched by pointcuts 18.d 
and pointcuts 19.d. The evaluation of these pointcuts needs 
therefore to occur after the connector 19.a has been applied to the 
system. This constraint is expressed by the <<follows>> 
dependencies in the diagrams of Figure 16 and Figure 19. The 
latter expresses that pointcut initTransition (19.d) is evaluated 
after connectors 19.a, LockResources and 19.f have been bound. 

ClassDiagram1 active <<Aspect>>class ResourceAspect {1/1}

<<operation,Pointcut>>

RequestTransition

x : RID_t

<<operation,Connector>>

LockResources

r : RID_t

<<binds>>

<<operation,Pointcut>>

CommitAccessTransition

x : RID_t

<<operation,Connector>>

AccessResources

r : RID_t

<<binds>>

<<operation,Pointcut>>

InitTransition

x : RID_t

<<operation,Connector>>

ReleaseResources

r : RID_t
<<binds>>

<<follows>>

<<follows>>

 
 

proceed(r);

 

status = lock_resource(r);

status

status = lock_channel(r);

[==OK]

Init

[==FAIL]

status

[==OK]

[==FAIL]

 

 
 
 

Init

request(x)

Ready
 

 

proceed(r);

 

release_channel(r);
release_resource(r);

          

*

'(.)*'(x)

Init
 

 

proceed(r);

 

token = services[r].invoke();
channels[r].send(token);

 

Ready

commit(x)

Init
 

Figure 19.  Binding diagram, pointcuts and connectors of the 
resource management aspect which encapsulates the specific 
resource access methods for the request handler 

6. ADOPTATION AND DEPLOYMENT 
The WEAVR is currently being used in production by 
development teams within the Network and Enterprise Business 
Unit. For the moment, adoption is limited to very simple aspects, 
such as the tracing aspect and the timeout aspect. 

In particular, the tracing aspect proved very useful for initial 
deployment of the system on the platforms. These platforms are 
pretty primitive, and do not include a standard debugging 
environment. The model simulator includes advanced tracing 
capabilities, as shown in Figure 5. The tracing aspect allows us to 
provide the same tracing functionality for platform runs, without 
having to clutter the models with tracing statements.  

The deployment of such aspects does not affect the development 
process at all, which facilitates adoption across development 
teams. Furthermore, as these aspects are pretty generic, they can 
be deployed by developers transparently, without requiring a 
complete understanding of the technology from their part. 

‘2PCAspect’ 

18.a. 18.b. 

18.c. 18.d. 

18.e. 18.f. 

19.a. 19.b. 

19.c. 19.d. 

19.e. 19.f. 



Yet, we think that the most benefits from the use of Aspect-
Oriented Software Development technologies could come from 
the deployment of aspects that enforce the conformance to 
specifications, such as the 2PC specification of Figure 2. The 
aspect-oriented implementation of the request handler discussed 
in the previous section could potentially reduce a lot of the 
development costs in one of the systems under development, 
while increasing consistency and the overall quality. A first 
estimate indicates that the overall size of the models could be 
reduced by 25 to 40%, if concerns such as fault-tolerance and 
security would be implemented as aspects. 

Yet, the implementation and deployment of such aspects would 
be radical change in the development process. Today, the 
responsibilities concerning fault-tolerance and security 
requirements are specified at the level of the individual 
components. This has the advantage that the development teams 
know exactly how to implement these concerns for the 
components they are responsible for. Yet, it leads to an important 
replication of effort. The implementation of these concerns as 
aspects would require that these requirements would be specified 
at the system level, in a form that could easily be mapped to 
aspect implementations. 

The degree of maturity of the Motorola WEAVR is still in an 
initial stage. It is critical to improve the degree of confidence in 
the tool. The following activities are therefore critical: 

1. Further develop the visualization engine and the simulation 
and testing capabilities for aspect-oriented models. This is 
essential to increase the degree of understanding and 
confidence in aspect-oriented technologies among the 
development teams 

2. Accelerate and generalize the deployment of simple aspects 
such as the tracing and timeout aspects across the business 
unit (bottom-up approach) 

3. Conduct a quantitative study on the potential benefits of 
aspect-orientation for systems under current development, 
concerning overall quality and model size reduction. We are 
working on factoring fault-tolerance and security concerns 
out of production models and gathering data that could 
convince upper management to adopt the technology early in 
the development life cycle in the future (top-down approach)  

4. Integrate the research body on aspect-oriented architecture 
and requirement engineering (early aspects) in order to be 
ready to describe aspect-oriented solutions at the 
specification level 

7. CONCLUSIONS 
We presented an industrial Model-Driven Engineering 
development environment and discussed Aspect-Oriented 
technologies in this context. We presented the Motorola WEAVR, 
its join point model for transition-centric state machines, and 
discussed its current degree of adoption. The particular join point 
model adopted is of essential importance. All the transition 
pointcut designators presented in the paper are expressed in terms 
of stable specification elements rather than implementation 
elements. This enables aspects to be defined in terms of a system 
specification, without requiring a complete knowledge of its 
implementation, giving such aspects additional robustness. This 
might reveal a differentiating advantage of Aspect-Oriented 
techniques applied at the modeling level over AOP technologies. 
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